
“Good Enough”
Architecture

Stefan Tilkov
stefan.tilkov@innoq.com
@stilkov

GOTO Berlin 2019

"Tegel Airport TXL Berlin May 2012 - 19" by andynash is licensed under CC BY-SA 2.0

https://www.flickr.com/photos/94611718@N00/7149034421
https://www.flickr.com/photos/94611718@N00
https://creativecommons.org/licenses/by-sa/2.0/?ref=ccsearch&atype=rich

@stilkov

(Software) Architecture Definitions
Fundamental concepts or

properties of a system in its
environment embodied in its

elements, relationships, and in the
principles of its design and

evolution (ISO 42010)

Whatever the architect
considers important enough

to merit their attention

Architecture represents the significant
design decisions that shape a system,
where significant is measured by cost

of change (Grady Booch)

@stilkov

Architecture is not an upfront activity performed
by somebody in charge of telling everyone else
what to do

@stilkov

Architecture is a property of a system, not a
description of its intended design

Pick the best car:

@stilkov

Quality

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

Scaling Dimensions

Logic

Load

written in
a day

depends on
German tax law

a dozen
users

half
of the
planet

Netflix
Twitter

Insurance
Policy Management

Facebook

Amazon

Random CMS

@stilkov

There is no “good” or “bad” architecture without
context; architecture needs to take specific
quality attributes into account

Cases

@stilkov

Context:
• …

Observation(s):
• …

Lesson(s) learned:
• …

#1: Non-extensible Extensibility

@stilkov

Context

• E-Commerce (retail) provider

• Global customer base

• Catalog/CMS/Shop/Fulfillment

• Multi-tenant

• Highly customizable

@stilkov

Large
customers 
(“strategic”)

Small
customers 
(“long tail”)

SpecificGeneral

High

Low

(Acceptable) 
Cost

Customization  
(Need)

The
Solution

@stilkov

If your design attempts to satisfy everyone, you’ll
likely end up satisfying no one

@stilkov

Highly specific code is often preferable to
sophisticated configuration

#2: Perilously fine-grained

@stilkov

Context

• Large-scale B2B food retailer

• New company-wide shop and logistics system

• >200 developers

@stilkov

Team 1

Team 3

Team 2

@stilkov

Order Service

Support Fulfillment BillingCheckout

Why would you cut up
your system into tiny,
distributed, hard-to-
manage fragments?

@stilkov

Everybody wants to be Netflix, but nobody is

@stilkov

@stilkov

…

@stilkov

Order Service

Support Fulfillment BillingCheckout

@stilkov

Support Fulfillment BillingCheckout

Order Service

@stilkov

Lessons learned

• Small is not always beautiful

• Refactoring within team boundaries much easier than
globally

• Ignore organizational parameters at your own risk

#3: Your system WILL be dynamic

@stilkov

Context

• Large-scale insurance system

• Model-driven development

• > 100 developers

• 2 Releases/year

@stilkov

Modeling

Business Concept

0 3 64 521

Technical Concept

Implementation

Module Test

Integration Test

Rollout

Vision

What if you
miss your slot?

Modeling

@stilkov

Policy

Holder

Clause

- id
- value
- dueDate

- name
- address
- status

- text
- validity
- taxClass

*

*

regionCode

Model Name New Name
(Meaning) Description Release

Introduced

taxClass regionCode … 10.3

…

@stilkov

Lessons learned

• Centralized responsibility hurts

• Faced with too much rigidity, a way around the rules will
be found

• Just because you’re used to it doesn’t mean it’s
acceptable

#4: Free-style architecture

@stilkov

Context

• E-Commerce/Online shop (Retail)

• 100-120 developers

• ~10 self-contained teams

@stilkov

number of
developers

strength of
decoupling

methods

modules

components

μservices

systems

@stilkov

From a layered system …

System

Logic

Data

UI

M
od

ul
e

M
od

ul
e

M
od

ul
e

@stilkov

… to a system of systems

System System System

Logic

Data

UI

Logic

Data

UI

Logic

Data

UI

@stilkov

In-page Cross-page
JavaScript method calls Links & redirects

Shared abstractions & frameworks Micro-architecture
Common language runtime HTTP

HTML 5 JS platform Standard Browser

@stilkov

But …

• Lack of standardization led to inefficient UI integration
at runtime

• Vast differences in API style, formats, documentation
created needless extra work

• Despite no centralised frontend, a central frontend team
created a new bottle neck

@stilkov

You cannot decide to not have an architecture;
if you don’t actively create it, be prepared to
deal with the one that emerges

@stilkov

There’s a fine line between diversity (that adds
value) and chaos (that doesn’t)

@stilkov

Extremely loose coupling requires very few
rules, but they need to be enforced strictly

#5: Cancerous Growth

@stilkov

Context

• Financial services provider with independent
brokers as clients

• ~30 developers

• 20 years of company history

@stilkov

Oracle DB

Oracle Forms App

@stilkov

Oracle DB

Java/JSP
Web App

Lots of
PL/SQL

@stilkov

Oracle DB

Java/JSP
Web App

Lots of
PL/SQL

.NET Web
Service

.NET Web
Service.NET Web

Service.NET Web
Service

@stilkov

Oracle DB

Java/JSP
Web App

Lots of
PL/SQL

.NET Web
Service

.NET Web
Service.NET Web

Service.NET Web
Service

Oracle DB

Java/JSP
Web App

Lots of
PL/SQL

.NET Web
Service

.NET Web
Service.NET Web

Service.NET Web
Service

Company A Company B

@stilkov

Java/JSP
Web App

Lots of
PL/SQL

.NET Web
Service

.NET Web
Service.NET Web

Service.NET Web
Service

Oracle DB

Java/JSP
Web App

Lots of
PL/SQL

.NET Web
Service

.NET Web
Service.NET Web

Service.NET Web
Service

Company A Company B

@stilkov

Java/JSP
Web App

.NET Web
Service

.NET Web
Service.NET Web

Service.NET Web
Service

Oracle DB

Java/JSP
Web App

.NET Web
Service

.NET Web
Service.NET Web

Service.NET Web
Service

Company A Company B

MongoCouch/Pouch Mongo MySQL

@stilkov

Java/JSP
Web App

.NET Web
Service

.NET Web
Service.NET Web

Service.NET Web
Service

Oracle DB

Java/JSP
Web App

.NET Web
Service

.NET Web
Service.NET Web

Service.NET Web
Service

Company A Company B

MongoCouch/Pouch Mongo MySQL

C++ Encryption
Lib

@stilkov

Lessons learned

• Successful systems often end up the worst architecture

• Unmanaged evolution will lead to complete chaos

• Don’t be afraid of some light architectural governance

#6: Improve with less intelligence

@stilkov

Context

• Bank with multiple CotS systems

• Highly proprietary integration solution phased out by
vendor

• Project launched to replace commercial product with
open source solution

@stilkov

Magical
Integration

Broker

Custom
App

CotS

DB

External
Partner

Other
Group

Company

Parent
Company

External
Partner

Custom
App

Custom
App

CotS

@stilkov

Magical
Integration

Broker

Custom
App

CotS

DB

External
Partner

Other
Group

Company

Parent
Company

External
Partner

Custom
App

Custom
App

CotS

Magical Integration Broker

Routing
Conversion

Transformation
Transcoding

Transport
Error handling
Business logic

…

@stilkov

Custom
App

CotS

DB

External
Partner

Other
Group

Company

Parent
Company

External
Partner

Custom
App

Custom
App

CotS

Pub/Sub Messaging

@stilkov

Custom
App

CotS

DB

External
Partner

Other
Group

Company

Parent
Company

External
Partner

Custom
App

Custom
App

CotS

Pub/Sub Messaging

Pub Sub Messaging

Pub/Sub routing
Transport

Error handling

Adapter
(Docker Container)

Conversion
Transformation

Transcoding
Error handling
Business logic

@stilkov

Lessons learned

• Smart endpoints, dumb pipes (cf. Jim Webber)

• Value of specific over generic solutions

• Micro architecture with blueprints

Takeaways

@stilkov

1.
Don’t be afraid of
architecture

@stilkov

2.
Choose the simplest thing
that will work

@stilkov

3.
Create evolvable structures

@stilkov

4.
Manage your system’s
architectural evolution

@stilkov

5.
Don’t build road blocks –
create value and get out of
the way

@stilkov

Stefan Tilkov
@stilkov
stefan.tilkov@innoq.com
Phone: +49 170 471 2625

innoQ Deutschland GmbH

Krischerstr. 100
40789 Monheim am Rhein
Germany
Phone: +49 2173 3366-0

innoQ Schweiz GmbH

Gewerbestr. 11
CH-6330 Cham
Switzerland
Phone: +41 41 743 0116www.innoq.com

Ohlauer Straße 43
10999 Berlin
Germany
Phone: +49 2173 3366-0

Ludwigstr. 180E
63067 Offenbach
Germany
Phone: +49 2173 3366-0

Kreuzstraße 16
80331 München
Germany
Phone: +49 2173 3366-0

@stilkov
That’s all I have.
Thanks for listening!

mailto:stefan.tilkov@innoq.com?subject=
http://www.innoq.com

@stilkov

www.innoq.com

OFFICES

Monheim
Berlin
Offenbach
Munich
Hamburg
Zurich

FACTS

~150 employees
Privately owned
Vendor-independent

SERVICES

Strategy & technology consulting
Digital business models
Software architecture & development
Digital platforms & infrastructures
Knowledge transfer, coaching & trainings

CLIENTS

Finance
Telecommunications
Logistics
E-commerce
Fortune 500
SMBs
Startups

@stilkov

Growing architectural maturity means less
guidance and rules are needed

@stilkov

The more experienced you are at (active and
passive) architectural governance, the less you
can do of it

