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(Software) Architecture Definitions
Fundamental concepts or 

properties of a system in its 
environment embodied in its 

elements, relationships, and in the 
principles of its design and 

evolution (ISO 42010)

Whatever the architect 
considers important enough 

to merit their attention

Architecture represents the significant 
design decisions that shape a system, 
where significant is measured by cost 

of change (Grady Booch)



@stilkov

Architecture is not an upfront activity performed 
by somebody in charge of telling everyone else 
what to do
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Architecture is a property of a system, not a 
description of its intended design



Pick the best car:
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Quality

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
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There is no “good” or “bad” architecture without 
context; architecture needs to take specific 
quality attributes into account



Cases
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Context: 
• … 

Observation(s): 
• … 

Lesson(s) learned: 
• …



#1: Non-extensible Extensibility
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Context

• E-Commerce (retail) provider 

• Global customer base 

• Catalog/CMS/Shop/Fulfillment 

• Multi-tenant 

• Highly customizable
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If your design attempts to satisfy everyone, you’ll 
likely end up satisfying no one 
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Highly specific code is often preferable to 
sophisticated configuration



#2: Perilously fine-grained
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Context

• Large-scale B2B food retailer 

• New company-wide shop and logistics system 

• >200 developers
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Team 1

Team 3

Team 2
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Order Service

Support Fulfillment BillingCheckout



Why would you cut up 
your system into tiny, 
distributed, hard-to-
manage fragments?
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Everybody wants to be Netflix, but nobody is
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…
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Order Service

Support Fulfillment BillingCheckout
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Support Fulfillment BillingCheckout

Order Service
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Lessons learned

• Small is not always beautiful 

• Refactoring within team boundaries much easier than 
globally 

• Ignore organizational parameters at your own risk



#3: Your system WILL be dynamic
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Context

• Large-scale insurance system 

• Model-driven development 

• > 100 developers 

• 2 Releases/year
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Modeling

Business Concept

0 3 64 521

Technical Concept

Implementation

Module Test

Integration Test

Rollout

Vision

What if you 
miss your slot?

Modeling
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Policy

Holder

Clause

- id 
- value 
- dueDate

- name 
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- text 
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- taxClass

*

*

regionCode

Model Name New Name 
(Meaning) Description Release 

Introduced

taxClass regionCode … 10.3

…
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Lessons learned

• Centralized responsibility hurts 

• Faced with too much rigidity, a way around the rules will 
be found 

• Just because you’re used to it doesn’t mean it’s 
acceptable



#4: Free-style architecture



@stilkov

Context

• E-Commerce/Online shop (Retail) 

• 100-120 developers 

• ~10 self-contained teams
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From a layered system …
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… to a system of systems
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In-page Cross-page
JavaScript method calls Links & redirects

Shared abstractions & frameworks Micro-architecture
Common language runtime HTTP

HTML 5 JS platform Standard Browser
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But …

• Lack of standardization led to inefficient UI integration 
at runtime 

• Vast differences in API style, formats, documentation 
created needless extra work 

• Despite no centralised frontend, a central frontend team 
created a new bottle neck
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You cannot decide to not have an architecture; 
if you don’t actively create it, be prepared to 
deal with the one that emerges
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There’s a fine line between diversity (that adds 
value) and chaos (that doesn’t)
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Extremely loose coupling requires very few 
rules, but they need to be enforced strictly



#5: Cancerous Growth
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Context

• Financial services provider with independent 
brokers as clients 

• ~30 developers 

• 20 years of company history
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Oracle DB

Oracle Forms App
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Lots of 
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Lessons learned

• Successful systems often end up the worst architecture 

• Unmanaged evolution will lead to complete chaos 

• Don’t be afraid of some light architectural governance



#6: Improve with less intelligence
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Context

• Bank with multiple CotS systems 

• Highly proprietary integration solution phased out by 
vendor 

• Project launched to replace commercial product with 
open source solution
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Lessons learned

• Smart endpoints, dumb pipes (cf. Jim Webber) 

• Value of specific over generic solutions 

• Micro architecture with blueprints



Takeaways
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1. 
Don’t be afraid of 
architecture
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2. 
Choose the simplest thing 
that will work
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3. 
Create evolvable structures
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4. 
Manage your system’s 
architectural evolution
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5. 
Don’t build road blocks – 
create value and get out of 
the way
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That’s all I have. 
Thanks for listening! 
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Growing architectural maturity means less 
guidance and rules are needed
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The more experienced you are at (active and 
passive) architectural governance, the less you 
can do of it


