

Designing APIs for
150 Million Orders

Matt Fewer

Senior Software Developer
@mattyfew

Michele Angioni
Senior Software Developer
@MicheleAngioni

Key numbers for Takeaway.com

• Q3 2019
• 41.6 million orders processed
• 44k online restaurants
• 87% growth in the number of orders from  

Q3 2018 to 2019
• Germany up by 136%

• Key Acquisition: Delivery Hero Germany

• 113+ million orders to date this year

Key numbers for Takeaway.com

What we will cover
• Scoober - Logistics team of Takeaway

• Managing our delivery drivers

• Domain Driven Design

• Frontend - Migration team

• Redesigning the Frontend

architecture

• Old vs new stack

• Backend for Frontend

• Design System

The Scoober Challenge

Forecasting
number of Drivers

Managing Leaves

Creating Driver
Shifts

Getting customer
orders in real time

The Scoober Challenge

Assigning jobs to
drivers

Guiding the driver
throughout the city

Providing a food
tracker to customers

Paying the drivers

How to start designing such an infrastructure with limited resources?

•Business requirements change
fast 

• Service boundaries are still not
clear 

• Limited budget for DevOps

A Monolith allows to explore
the complexity of a system and
its component boundaries

As complexity rises start
breaking out some
microservices

Continue breaking out
services as your knowledge
of boundaries and service
management increases

The Scoober Challenge

Separation of Concerns

Loose Coupling

Better Maintainability

Modularity

Experimentation

Better Scaling

Resilience to
Failures

The Scoober Challenge

Communicatnion in the microservices era

Bidirectional
Web Sockets

Synchronous REST / GraphQL
endpoints

Asynchronous events
Streaming data
pipelines

Communicatnion in the microservices era

… but how ?

Domain Driven Design

Domain-driven design (DDD) is an approach to software
development for complex needs by connecting the

implementation to an evolving model.

 Wikipedia

Domain Driven Design - Terms

Domain, our
Business

IT
General Subdomain

Customer Service
Subdomain

Sales
Subdomain

Business
Intelligence
Subdomain

Routing
Subdomain Dispatching

Subdomain

Shiftplanning
Subdomain

Ubiquitous language: all stakeholders (developers, PMs / POs, QAs…) should use the same naming conventions

DDD - Ubiquitous Language

An Ubiquitous Language is a shared set of concepts, terms and definitions
between the business stakeholders and the technical staff.

Use the language to drive the design of the system.

Defiinitnion

DDD - Ubiquitous Language

• Leave: authorised absence from work.
Vacation leaves and sick leaves are
paid. Unpaid leaves are not. 

• Driver: an employed driver who picks
up the food and brings it to the
customers 

• Job: A confirmed food order placed by
a Customer

• …

Glossary

Speci!ica"ions

Documenta"ion

Business
Experts

Technical
Experts

Applica"ion
Code

Tes"ing
Code

Ubiquitous
Language

Understanding the business processes and identifying the Bounded Contexts of our domain
(Context Mapping)

DDD - Context Mapping

Shiftplanning
Bounded Context

Routing
Bounded Context

Good Practnices for API design

Good Practnices: Authentnicatnion

No Home Made Solutions Use Industry Standards Adopt Cloud Solutions

Good Practnices: Authorizatnion

Authentnicatnion
Who you are

Authorizatnion
What you can do

Role Based Access Control (RBAC)

Can Accept Leaves

Can Deny Leaves

Can See All Leaves

Can Access Leaves Page

Can Request Leaves

Human
Resources

Driver

Good Practnices: Authorizatnion

Jim
HR

Alice
Developer

Mark
Driver

Define a format for your error messages 
 

Log all internal errors to cloud and specialised solutions 
 

Adopt an alerting strategy based on log levels

Good Practnices: Errors

Unauthorised /
Forbidden /
NotFound ...

InternalError

The HTTP Status Code is NOT enough or not always usable (GraphQL). Include the
ErrorCode in the error response

Good Practnices: Versioning

Problem: Your API is gonna change

Good Practnices: Versioning
• Version directly in the url after the domain: 

https://myapi.com/v1/coolthings/12301  
 

• Semantic versioning or timestamp in the request (query string or header): 
https://myapi.com/coolthings/12301?v=2.1 
https://myapi.com/coolthings/12301?v=2019-05-12 
 

• Version your asynchronous events as well, 
either the topic / queue name or put the version in the event payload

Good Practnices: Documentatnion

Clear and up-to-date
documentation

Keep documentation of all
versions

Store docs online and
always available

Good Practnices: Testning

Use different
environments

Blue / Green
deployments

Test Automation

Frontend

Our Current Stack

Monolithic Problems…
- Scaling

- No framework

- Hard to make releases

- Dev environments configs inconsistent

- Reliance on babel to use ES6

- Frontend teams in Germany !  

and the Netherlands "

- No clear separation between the Frontend and

Backend in codebase

Src: https://www.deviantart.com/bagan-akatsuki/

Tightly coupled logic

Developer
Wack-a-mole

Legacy system

Current Website Legacy XML API

Database

src: 18f.gsa.gov/assets/blog/web-design-standards/library/6-interface-inventory.png

Consumer Web:
The Great Migratnion

Consumer Web:
The Great Migratnion

src: https://www.zastavki.com

Goal

Create a new frontend application

with modern technologies which will

enable it to scale, be data-driven, and

create small and efficient teams

focused on specific business domains.

Areas to Improve
• Time to market

• Performance

• Security and stability

• A/B testing

• Decoupling services

• Scale with clear separation of business domains

The Stack

What about the 
Legacy XML API?

Backend for Frontend (BFF)

“One backend per user interface. The BFF team

fine-tunes the behavior and performance of

each backend to best match the needs of the

frontend environment, without worrying about

affecting other frontend experiences.”

- docs.microsoft.com

Backend for Frontend (BFF)

• Separate BE service for a specific FE interface

• We can avoid customizing a BE for multiple interfaces

• Web, iOS, Android

• Only contains client-side logic

• Problems solved 👍

• Provide separate functionality for mobile and web apps

• Shield BE and FE from each other’s change requests

• Translation layer

• No conflicting update requirements

src: Sam Newman - https://samnewman.io

Legacy system

Consumer Web

BFF

Legacy XML API

Challenges for BFF

• Having to do status-quo discovery in parallel with

anticipating changes in the backend, as we also intend to

move towards a service based architecture

• Have to reevaluate and possibly reengineer our

dependencies

• To drive API development, we have to accept that we will

have to iterate a lot - sometimes meaning rework!

Wins for BFF

• Despite working on a major migration project, BFF can

work without worrying about breaking existing

functionality, and enable the FE overhaul without creating

significant workload on BE.

• Human readable JSON! - better for debugging, discovery,

and practicality

src: 18f.gsa.gov/assets/blog/web-design-standards/library/6-interface-inventory.png

The complete set of design standards,

documentation, UI patterns, and components. Design

systems allow you to manage design at scale.

Included in our design system:

• Typography

• Layouts and grids

• Colors

• Icons

• Components

• Coding Conventions

• Documentation

Design System

Snacks Design System

Approach

• Staged rollout

• low risk to business

• Modern stack easier for hiring

• Business domain separation

• Scale development by domain

• Weak dependencies between business

domains

• Backend for Frontend (BFF)

• Design System

Pros

😃

Cons
• Not all engineers will be part of the first migration step

• Full site migration will take time

• Need to maintain both platforms

😕

Thank you

Matt Fewer

Senior Software Developer
@mattyfew

Michele Angioni
Senior Software Developer
@MicheleAngioni

Q&A

References
• “Software Architecture: Domain-Driven Design” by Allen Holub

• “Domain-Driven Design Distilled” by Vaughn Vernon

• “Domain-Driven Design” by Eric Evans

• Anything by Brad Frost

• Context mapping: https://www.infoq.com/articles/ddd-contextmapping/

• Attribute Based Access Control: https://www.axiomatics.com/blog/attribute-based-access-control-beyond-

roles-1/

• Amazing project documentation example: https://vuejs.org/v2/guide/

• Free platform to host documentation: https://readthedocs.org

https://bradfrost.com/

