

O'REILLY"

Building

E5

Sam
Newman ®

& Associates

Sam Newman

@samnewman

NEW BOOK!

Monolith To Microservices.

Monolith To Microservices is a forthcoming book on system decomposition
from O'Reilly

How do you detangle a monolithic system and migrate it to a microservices architecture? How do you do 1t while
maintaining business-as-usual? As a companion to Building Microservices, this new book details a multiple
approaches for helping you transition from existing monolthic systems to microservice architectures. This book is
ideal if you're looking to evolve your existing systems, rather than just rewriting everything from scratch.

Tapics include:

-+ Should you migrate to microservices, and if you should, how do you prioritise where to start
-+ How do you incrementally decompose an application
-+ Discusses multiple migration patterns and where they apply

=+ Delves into details of database decomposition, including the impact of breaking referential and transactional
integrity, new failure mades, and more

= The growing pains you'll experience as your microservice architecture grows

Read The Early Access Version!

OREILLY

Monolith to
Microservices

Evolutionary Patterns to Transform
Your Monolith

Sam Newman

https://samnewman.io/books/monolith-to-microservices/

@samnewman

Customer
Service

Customer
Service

SINGLE PROCESS MONOLITH

Monolith

DB

@samnewman

All code packaged
Into a single process

Monolith

A
\/

DB

@samnewman

All code packaged
Into a single process

All data stored In a
single database

Monolith

A
\/

DB

@samnewman

Module C

_

Module A 5 Module B

Module D : Module E

J

A\ 4
~ N
"~ A
DB
"~ -

@samnewman

The code Is broken
INto modules

Module C

_

Module A Module B

Module D : Module E

J

\ 4
~ N
"~ -
DB
"~ -

@samnewman

The code Is broken

. Module A
into modules ocHe
Each module Module C Module D
packaged together '
Into a single process
— g TN
N—_ I
DB
N— _~

Module B

' Module E

@samnewman

The code Is broken

. Module A
into modules ocHe
Each module Module C Module D
packaged together '
Into a single process
— g TN
N—_ I
DB
N— _~

Module B

' Module E

Highly underrated
option

@samnewman

Module C

_

Module A

Module D : Module E

Module B

A

A4

~ N
N~ -

Data for
module C

N— A

\ 4
~ N
"~ -

Data for
module D

N— A

~ N
"~ -

Data for
module E

N— A

@samnewman

@samnewman

Could be on-prem
software, or a SAAS
product

@samnewman

Could be on-prem
software, or a SAAS
product

You have limited to
no ability to change
the core system

@samnewman

Could be on-prem
software, or a SAAS
product

You have limited to
no ability to change
the core system

A
\/

DB

You *might* have
access to underlying

storage...

@samnewman

Could be on-prem
software, or a SAAS
product

You have limited to
no ability to change
the core system

API

A
\/

DB

You *might* have
access to underlying
storage...

...or perhaps APlIs

@samnewman

DISTRIBUTED MONOLITH

~ N O R
N p
~ /'\ S
N L /

-

@samnewman

DISTRIBUTED MONOLITH

4 B
_ _/
~

@samnewman

DISTRIBUTED MONOLITH

~ N O R
N p
~ /'\ S
N L /

-

@samnewman

DISTRIBUTED MONOLITH

@samnewman

DISTRIBUTED MONOLITH

IO
N

@samnewman

DISTRIBUTED MONOLITH
change

@samnewman

DISTRIBUTED MONOLITH
change
Larger-scoped
deployments

@samnewman

DISTRIBUTED MONOLITH

‘—

_ e

(I
o

High cost of
change

Larger-scoped
deployments

More to go
wrong

@samnewman

DISTRIBUTED MONOLITH
‘ change

Larger-scoped
deployments
More to go

‘ o

\ Release
co-ordination

@samnewman

3 !
e —

-

et ..nr\“.w.ual.l. R CCR——

A

IR

(]

|

S ——

18

RTINS

SAFE

Watch out, there’s a release train coming!

Ops Meta- Metrlcs ~

The Currency You Use to Pay For Change

John Allspaw
VP Operations

Etsy.com

hitp://www.flickr.com/photos/wwarby/3296379139

http://www.slideshare.net/jallspaw/ops-metametrics-the-currency-you-pay-for-change-4608108

10 /

Change

Lots of lines
i of code
3 +
| W
11 A long time
0 } } } } } } -
0 1 2 3 4 5 &) 7 8 G 10
Time

http://www.slideshare.net/jallspaw/ops-metametrics-the-currency-you-pay-for-change-4608108

yd
pd
yd
yd
yd
yd

O //

CCD P } small amounts of
_g //*-v-* code change
O // deployed

Ve frequently
yd
yd
yd
yd

Time

http://www.slideshare.net/jallspaw/ops-metametrics-the-currency-you-pay-for-change-4608108

If you stick with a release train for too long, you’ll
end up with a distributed monolith

The Distributed Monolith

For when life isn’t already complicated enough

aaaaaaaaaa

Continuous Delivery

Release on demand

aaaaaaaaaa

Customer
Service

Customer
Service

DOMAIN DRIVEN DESIGN

Foreword by Martin Fowler

@samnewman

DOMAIN DRIVEN DESIGN

DIASEAGAS

he Heart of Software

T ah ke e Wty
. - - - i o — s
B s T ey = '
: - - e "! : : o - ~ -
. . ‘.‘
it)

DESIG

Foreword by Martin Fowler VAUGHN:V E&R NON
: g

| 1Y

@samnewman

@samnewman

Order
Management

@samnewman

Invoicing

»
|
|
|
|
|
|
|

EEEEEEEEEEERRNY

Order
Management

@samnewman

Order
Management

Invoicing

»
|
|
|
|
|
|
|

EEEEEEEEEEERRNY
< I EEEEEEN

@samnewman

Order
Management

Invoicing

»
|
|
|
|
|
|
|

EEEEEEEEEEERRNY
< I EEEEEEN

@samnewman

Order
Management

Invoicing

»
|
|
|
|
|
|
|

EEEEEEEEEEERRNY
< I EEEEEEN

@samnewman

Order
Management

Invoicing

»
|
|
|
|
|
|
|

EEEEEEEEEEERRNY
< I EEEEEEN

@samnewman

Order
Management

Invoicing

»
|
|
|
|
|
|
|

EEEEEEEEEEERRNY
< I EEEEEEN

@samnewman

Order
Management

Invoicing

»
|
|
|
|
|
|
|

EEEEEEEEEEERRNY
< I EEEEEEN

AN I I EEEEEEEEEEED

Notifications

AN EEEEER

@samnewman

Order
Management

nvoicing -
v

G EEgEEERERN
EEEEDN HEBA

Al EEHEEN | HEN
|

= Notifications =

|
|
|
‘IIIIIIIIIIIIII'

@samnewman

Order
Management

nvoicing -
v

G EEgEEERERN
EEEEDN HEBA

> ol

>
¢, anssnnnn?’ g
gy

| 'u

Notifications

A
)
E N EEEEEEEEEERN ‘

,,
-) o
)
- g E I HEEHERNR

@samnewman

Y e EEEEEEEEEEER

Order
Management

nvoicing -
v

G EEgEEERERN
EEEEDN HEBA

";llllll nfumn : :
: : .) : :lllllllll:
t = Notifications :
:\:Cllllllllllllll:

@samnewman

The problems you are trying to solve with
microservices will drive *how™ you decompose them

@samnewman

You need a clear idea of what you are trying to
achieve with microservices

@samnewman

‘‘‘‘‘‘

il ‘?C‘_ b

https://www.ﬂickr.oom/photos/orinrobertjohn/égf" i 04

=

Monolith

@samnewman

Monolith

@samnewman

Production

lll
.....
*

Monolith

'S L 2
......
ll

@samnewman

Production

lll
.....
*

Monolith

'S L 2
......
ll

@samnewman

You won't appreciate the true horror, pain and
suffering of microservices until you're running them in
production

@samnewman

“If you do a big bang rewrite, the only thing you’re
certain of is a big bang”

- Martin Fowler (paraphrased)

@samnewman

So migration patterns we use must allow for
Incremental change

Patterns that allow for our architecture to
evolve, whilst still delivering features

TR WL g

. c S ﬁ.ﬁ A

. L}

m/p

/)Wl

.htto%
f §

https://www.flickr.com/photos/cynren/16012074217/

IMPLEMENTING A STRANGLER FIG PATTERN

@samnewman

1. Asset capture:

|[dentify the functionality to move to a new
Mmicroservice

1. Asset capture:

|[dentify the functionality to move to a new
Mmicroservice

2. Redirect calls

Intercept calls to old functionality,
and redirect to the new service

“MOVING” FUNCTIONALITY?

@samnewman

It might be copy and paste

It might be copy and paste

More likely Is a total or partial rewrite

HTTP PROXY

_

Existing Monolith

/

@samnewman

HTTP PROXY

_

Existing Monolith

J

@samnewman

HTTP PROXY

HTTP Proxy

_

Existing Monolith

~

/

@samnewman

HTTP PROXY

vV V vV

HTTP Proxy

v Vv ¥

-~

_

Existing Monolith

~

/

@samnewman

HTTP PROXY

vV V vV

HTTP Proxy

v Vv ¥

-~

_

Existing Monolith

~

/

O

@samnewman

HTTP PROXY

vV V vV

HTTP Proxy

v v

_

Existing Monolith

~

/

@samnewman

HTTP PROXY

vV V vV

HTTP Proxy

_

Existing Monolith

~

/

/\
TN
N~

@samnewman

@samnewman

Order
Management

nvoicing -
v

Loyalty

G EEgEEERERN
EEEEDN HEBA

' 4
P

5 EEEEEN | H N

Notifications

EEEEEEED N

S

N

o

.5

@samnewman

INnvoicing Order
EEEEEyEEEEERY Management

»
|
|
|
|
|
|
|

Loyalty

< EEEEEEREBNRGg
\
| o\

U EEgEEERER
EEEEDN HEBA

. 4
P

Yy Qi EEEEESENEER

Notifications

| S
S

o

N

.5

@samnewman

Branch By Abstraction

BRANCH BY ABSTRACTION

Notifications

@samnewman

BRANCH BY ABSTRACTION

Notifications

@samnewman

BRANCH BY ABSTRACTION

o= 5 ™~

. Invoicing :

Notifications

@samnewman

BRANCH BY ABSTRACTION

8

Notifications

@samnewman

BRANCH BY ABSTRACTION

8

Notifications

@samnewman

BRANCH BY ABSTRACTION

8

Notifications

1. Create abstraction point

@samnewman

BRANCH BY ABSTRACTION

8

Notifications

1. Create abstraction point

2. Start work on new service

Implementation

@samnewman

BRANCH BY ABSTRACTION

ﬁ.

Notifications

Service Calling
Implementation

1. Create abstraction point

2. Start work on new service

Implementation

@samnewman

BRANCH BY ABSTRACTION

8

Notifications

Service Calling .
Implementation

1. Create abstraction point

2. Start work on new service

Implementation

N

Notification
Service

\/

@samnewman

BRANCH BY ABSTRACTION

——+

S - Orders 3. Switch over

1. Create abstraction point

2. Start work on new service
\ implementation

N

Service Calling .. Notification
Implementation Service

\/

Notifications

@samnewman

BRANCH BY ABSTRACTION

——+

S - Orders 3. Switch over

1. Create abstraction point

2. Start work on new service
\ implementation

N

Service Calling .. Notification
Implementation Service

\/

Notifications

@samnewman

BRANCH BY ABSTRACTION

8

Notifications

Service Calling

Implementation

1. Create abstraction point

2. Start work on new service

Implementation
3. Switch over

4. Cleanup

N

Notification
Service

\/

@samnewman

BRANCH BY ABSTRACTION
1. Create abstraction point

2. Start work on new service
K e \ implementation

. Invoicing : v

S - Orders 3. Switch over

4. Cleanup

N

Service Calling .. Notification
Implementation Service

\/

@samnewman

Robert L. Martin Series

20 0 U il TR 1A -

’ . _
- ¥ s 1in ’ J : . ;
el e 2 B ' Ry | S tiing

WORKING

EFFECTIVELY
WITH

LEGACY CODE

Michael L. Feathers

@samnewman

PARALLEL RUN

-~

v

Composite
Abstraction

Existing
Implementation

New Service
Calling
Implementation

@samnewman

PARALLEL RUN

New Service
Calling
Implementation

Existing
Implementation

@samnewman

PARALLEL RUN

New Service
Calling
Implementation

Existing
Implementation

@samnewman

PARALLEL RUN

New Service
Calling
Implementation

Existing
Implementation

@samnewman

PARALLEL RUN

New Service
Calling
Implementation

Existing
Implementation

@samnewman

GITHUB SCIENTIST

Scientist!
A Ruby library for carefully refactoring critical paths.

How do | science?

Let's pretend you're changing the way you handle permissions in a large web app. Tests can help guide your refactoring,
but you really want to compare the current and refactored behaviors under load.

require "scientist"

class MyWidget
def allows?(user)
experiment = Scientist::Default.new "widget-permissions"
experiment.use { model.check_user?(user).valid? } # old way
experiment.try { user.can?(:read, model) } # new way

experiment. run
end
end

Wrap a use block around the code's original behavior, and wrap try around the new behavior. experiment.run will
always return whatever the use block returns, but it does a bunch of stuff behind the scenes:

https://github.com/github/scientist

@samnewman

https://github.com/github/scientist

GITHUB SCIENTIST

Scientist! Alternatives

A Ruby library for carefully refactoring critical paths. e daylerees/scientist (PHP)

s scientistproject/scientist.net (.NET)

How do | science? e joealcorn/laboratory (Python)

. o . , o rawls238/Scientist4J (Java)
Let's pretend you're changing the way you handle permissions in a large web app. Tests can help guide your refactoring,

but you really want to compare the current and refactored behaviors under load. * tomiaijo/scientist (C++)
e trello/scientist (node.js)

require "scientist" ¢ ziyasal/scientist.js (node.js, ES6)

class MyWidget e veller/laboratory (Clojure)

def allows?(user) e |ancew/Scientist (Perl 5)
experiment = Scientist::Default.new "widget-permissions" S
experiment.use { model.check_user?(user).valid? } # old way ¢ lancew/ScientistP6 (Perl 6)

experiment.try { user.can?(:read, model) } # new way e MadcapJake/Test-Lab (Perl 6)
experiment. run e cwhbriones/scientist (Elixir)
end » calavera/go-scientist (Go)

end
e jelmersnoeck/experiment (Go)

Wrap a use block around the code's original behavior, and wrap try around the new behavior. experiment.run will * spoptchev/scientist (Kotlin / Java)

always return whatever the use block returns, but it does a bunch of stuff behind the scenes: e junkpiano/scientist (Swift)

https://github.com/github/scientist

@samnewman

https://github.com/github/scientist

ACCESSING DATA

-
.

Monolith

s

DB

@samnewman

ACCESSING DATA

-
.

Monolith

P

Invoicing

=

s

DB

@samnewman

ACCESSING DATA

-
.

Monolith

TN

Invoicing

s

DB

~_

@samnewman

Our new service needs

data....
/ \ some/i

Monolith Invoicing
DB

@samnewman

-
.

Monolith

~
J

DB

Our new service needs
some data....

TN

Invoicing

~_

What are our options?

@samnewman

DATA REUSE?

Monolith

TN

s

DB

Invoicing

~_

@samnewman

Directly access the data

PN

Monolith Invoicing

g J
i

DB

/

@samnewman

-
_

Monolith

~
/

1

DB

Directly access the data

PN

Invoicing

@samnewman

-
_

Monolith

~
J

1

DB

Directly access the data

PN

Invoicing

But coupling!

@samnewman

AVOID SHARING DATABASES!

@samnewman

AVOID SHARING DATABASES!

@samnewman

AVOID SHARING DATABASES!

@samnewman

AVOID SHARING DATABASES!

@samnewman

AVOID SHARING DATABASES!

lllllllllllllllllllllllllllllll

.---------------—

@samnewman

AVOID SHARING DATABASES!

HEE = = = = == == = == == == =N = = W
.---------------—

=

llllllllllllllllllllllllllllllll

@samnewman

AVOID SHARING DATABASES!

Information hiding!

DB

llllllllllllllllllllllllllllllll

@samnewman

EXPOSE DATA IN THE MONOLITH

-
_

Monolith

/

s

DB

TN

Invoicing

~_

@samnewman

EXPOSE DATA IN THE MONOLITH

-
.

Monolith

TN

Invoicing

~—

DB

~_

@samnewman

-
.

Monolith

DB

PN

Invoicing

~_

This makes sense If the data

belongs to the functionality that

remains in the monolith

@samnewman

EXPOSE DATA IN THE MONOLITH (CONT)

-
.

Monolith

TN

Invoicing

~—

DB

~_

@samnewman

EXPOSE DATA IN THE MONOLITH (CONT)

-~

TN
Monolith Invoicing
\\ ~_
Defining this API can help
3 discover the scope of further
jB/ services...

@samnewman

EXPOSE DATA IN THE MONOLITH (CONT)

-
.

Monolith

PN

Invoicing

~_

Defining this API can help
discover the scope of further
services...

@samnewman

EXPOSE DATA IN THE MONOLITH (CONT)

C)

Monolith

N

DB

@E

DB

N

TN

Invoicing

~_

@samnewman

MOVE DATA TO THE NEW SERVICE

-
_

Monolith

/

s

DB

TN

Invoicing

~_

@samnewman

MOVE DATA TO THE NEW SERVICE

-
.

Monolith

TN

Invoicing

1

N— A

Invoicing
Data

N— -

~_

@samnewman

MOVE DATA TO THE NEW SERVICE

-
.

Monolith

s

DB

TN

Invoicing

— N
"~ A

Invoicing
Data

N— -

@samnewman

Monolith needs to be changed to
source data from the new service

Monolith Invoicing
—— ———
DB)
Invoicing
— Data

N— A

@samnewman

Monolith needs to be changed to
source data from the new service

- R

Monolith Invoicing
DB)
Invoicing
— Data

N— A

@samnewman

DB Refactoring Patterns

P

.. VP
7y
~

4<

R EFACTORING " s
I DATABASES

ScorT W. AMBLER

PRAMOD |. SADALAGE 258

Forewords by Martin Fowler, John Graham,
Sachin Rekhi, and Dr. Paul Dorsey

JOINS ACROSS TABLES

Monolith

Monolith Database

@samnewman

JOINS ACROSS TABLES

Monolith

v
ID Album

123 Death Polka Vol 4
456 Best Of Music

Line Items

Monolith Database

@samnewman

JOINS ACROSS TABLES

Monolith

v
ID Album

123 Death Polka Vol 4
456 Best Of Music

Line Items

Monolith Database

@samnewman

JOINS ACROSS TABLES

Monolith

v
ID Album

123 Death Polka Vol 4
456 Best Of Music

Line Items

Monolith Database

@samnewman

JOINS ACROSS TABLES

Monolith

v
ID Album

123 Death Polka Vol 4
456 Best Of Music

Line Items

Monolith Database

@samnewman

JOINS ACROSS TABLES

v

Monolith

ID

Album

123 Death Polka Vol 4

456

Best Of Music

Line Items

SKU Date | Amount
! 123 14/7/19 | $4.55
456 14/7/19 | $7.67
Ledger

Monolith Database

@samnewman

JOINS ACROSS TABLES

v

Monolith

ID

Album

123 Death Polka Vol 4

456

Best Of Music

Line Items

SKU Date | Amount
! 123 14/7/19 | $4.55
456 14/7/19 | $7.67
Ledger

Monolith Database

@samnewman

TN T

Catalog Finance

~_ ~_

Catalog DB Finance DB

TN T

Catalog D MR L L L LR L LR L ERER Finance

~_ ~_

Catalog DB Finance DB

TN

Catalog

~

v

ID

Album

123

Death Polka Vol 4

456

Best Of Music

Line [tems

Catalog DB

T

Finance

~_

Finance DB

TN

Catalog

~

v

T

Finance

ID

Album

SKU Date

123

Death Polka Vol 4

123 14/7/19

456

Best Of Music

456 14/7/19

Line [tems

Catalog DB

Ledger

Finance DB

ID

Album

123

Death Polka Vol 4

456

Best Of Music

Line Items

Database

SKU

Date

123

14/7/19

456

14/7/19

Ledger

ID

Album

123

Death Polka Vol 4

456

Best Of Music

Line Items

Database

Date

14/7/19

456

14/7/19

Ledger

ID Album Date
123 Death Polka Vol 4 [e D3 14/7/19
456 Best Of Music 456 14/7/19

Line Items Ledger

Database

ID Album

123 Death Polka Vol 4
456 Best Of Music

Line I[tems

Catalog DB

ID

Album

123

Death Polka Vol 4

456

Best Of Music

Line Items

ID

Album

123

Death Polka Vol 4

456

Best Of Music

Line I[tems

Catalog DB

Date

=123 14/7/19

456 14/7/19

Ledger

Database

SKU

Date

Amount

/item/123

14/7/1

$4.55

/item/456

14/7/1

$7.67

Ledger

Finance DB

ID

Album

123

Death Polka Vol 4

456

Best Of Music

Line Items

ID

Album

123

Death Polka Vol 4 &~

456

Best Of Music

Line [tems

Catalog DB

Date

=123 14/7/19

456 | 14/7/19

Ledger

Database

SKU

Date

Amount

T /item/123

14/7/1

$4.55

/item/456

14/7/1

$7.67

Ledger

Finance DB

More network hops - latency can suffer

Lost enforcement of data consistency

@samnewman

STATIC REFERENCE DATA

MusikShopMono

Country Codes

@samnewman

SPLITTING TABLES

Monolith

ltem

Database

@samnewman

Monolith

Bee Gees Hits | $4.99 | 45

ltem

Database

@samnewman

SPLITTING TABLES

Monolith

45

3ee Gees Hits | $4.99

ltem

Database

@samnewman

SPLITTING TABLES

Monolith

ltem

Database

@samnewman

Monolith

Stock Levels

Catalog Item

Database

TN

Catalog

~_

)

Payment

TN

Warehouse

Gateway

<

~_

TN

Catalog

~_

)

Payment

Gateway

<

We can find out how
much something
costs...

TN

Catalog

~_

TN

Payment

Gateway

~_

We can find out how
much something
costs...

TN

Catalog

~_

TN

Payment
Gateway

~_

...and can take
payment...

We can find out how
much something
costs...

...but can’t check stock
levels!

Catalog Warehbduse

Payment
Gateway

...and can take
payment...

Should we keep selling CDs in this
situation?

CAP Theory

CAP Theory

In a partition, you have to tradeoft
between consistency and availability

Take the money?

Take the money?

Favouring availability over consistency

Don’t take the money?

Don’t take the money?

Favouring consistency over availability

This doesn’t have to be black
and white...

This doesn’t have to be black
and white...

Last view of stock: 1 hour ago
Items: 100

This doesn’t have to be black
and white...

Last view of stock: 1 hour ago Sell item
Items: 100

This doesn’t have to be black
and white...

Last view of stock: 1 hour ago Sell item
Items: 100

Last view of stock: 1 hour ago
Items:]

This doesn’t have to be black
and white...

Last view of stock: 1 hour ago Sell item
Items: 100

Last view of stock: 1 hour ago Don’t sell 1tem
Items:]

This doesn’t have to be black
and white...

Last view of stock: 1 hour ago Sell item
Items: 100

Last view of stock: 1 hour ago Don’t sell 1tem
Items:]

Last view of stock: 2 days ago
Items: 100

This doesn’t have to be black
and white...

Last view of stock: 1 hour ago Sell item
Items: 100

Last view of stock: 1 hour ago Don’t sell 1tem
Items:]

Last view of stock: 2 days ago Don’t sell 1tem
Items: 100

Memories, Guesses, and Apologies

Rate this article

Pat Helland M - 200: m 5

Well, here I am blogging on the bus with my newly installed Windows Live Writer!!!

This blog is a text version of a five minute "Gong Show" presentation I did at CIDR (Conference on Innovative Database Research)
on Jan 8,2007.

All computing can be considered as: "Memories, Guesses, and Apologies". This is a personal opinion about how computers suck.
Furthermore, it offers additional opinions about how we can take advantage of their sucki-ness. Lets dig into this...

Newton and Einstein

It used to be that we thought of computing as one big-ass mainframe. The database folks only thought about the database.
Transactions (and transactional serializability) offered a crisp and clear perspective of how time marches forward uniformly. When
working on transaction T(i), any other transaction T(j) can be perceived as occurring before T(i) or after T(i). If T(i) and T(j) are
concurrently processed, the transaction system ensures that either order is correct without modifying the semantics. This offers a
crisp and clear perspective of now. Time marches forward like a clock exactly as Newton envisaged his universe.

Nowadays, we have lots and lots of computers. Big ones, small ones, connected, disconnected, occasionally connected, etc.
These computers each have their own perspective of time. When you see data, it is unlocked and an artifact of the past. Time is
subjective with many different notions of now. This is very much the way Einstein revamped our understanding of the universe.

Moving to SOA is like moving from Newton's Universe to Einstein's Universe.

https://blogs.msdn.microsoft.com/pathelland/2007/05/15/memories-guesses-and-apologies/

THANKS!

OREILLY

Monolith to
Microservices

Evolutionary Patterns to Transform
Your Monolith

Sam Newman

@samnewman

Sam
Newman

& Associates

Sam Newman w e

Talks & Workshops

Here are a llat of tha talkz 1am currently preseming. On request, | can nresem different oples or 2ven my
older talks. If you want me 10 present these toplcs at ycur conference or comaany, then please ceniact me

Yol tan alan see where I'll he apeaking rext on my events pane
! J

What Is This Cloud Native Thing .
Anyway? A Y

Ataly explaring whnar the he'l Cloud Natlve means \ ™ Mcscsenices”

Find Dut More S

Feature Branches And Toggles In |
A Post-GitHub World I ; I

Podcast

Writing Contact

Building
Microservices

-~ n

I have wrilten ¢ book callec
"Building Microservices”,
which is available now. Want
10 knnw more?

Read on...

Video!

https://samnewman.io/

@samnewman

