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NEW BOOK!

Monolith To Microservices.

Monolith To Microservices is a forthcoming book on system decomposition
from O'Reilly

How do you detangle a monolithic system and migrate it to a microservices architecture? How do you do 1t while
maintaining business-as-usual? As a companion to Building Microservices, this new book details a multiple
approaches for helping you transition from existing monolthic systems to microservice architectures. This book is
ideal if you're looking to evolve your existing systems, rather than just rewriting everything from scratch.

Tapics include:

-+ Should you migrate to microservices, and if you should, how do you prioritise where to start
-+ How do you incrementally decompose an application
-+ Discusses multiple migration patterns and where they apply

=+ Delves into details of database decomposition, including the impact of breaking referential and transactional
integrity, new failure mades, and more

= The growing pains you'll experience as your microservice architecture grows

Read The Early Access Version!

OREILLY

Monolith to
Microservices

Evolutionary Patterns to Transform
Your Monolith

Sam Newman

https://samnewman.io/books/monolith-to-microservices/
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Could be on-prem
software, or a SAAS
product
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product

You have limited to
no ability to change
the core system
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Could be on-prem
software, or a SAAS
product

You have limited to
no ability to change
the core system
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DISTRIBUTED MONOLITH
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Larger-scoped
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‘ change
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SAFE

Watch out, there’s a release train coming!




Ops Meta- Metrlcs ~

The Currency You Use to Pay For Change

John Allspaw
VP Operations

Etsy.com

hitp://www.flickr.com/photos/wwarby/3296379139

http://www.slideshare.net/jallspaw/ops-metametrics-the-currency-you-pay-for-change-4608108
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http://www.slideshare.net/jallspaw/ops-metametrics-the-currency-you-pay-for-change-4608108
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If you stick with a release train for too long, you’ll
end up with a distributed monolith



The Distributed Monolith

For when life isn’t already complicated enough

aaaaaaaaaa



Continuous Delivery

Release on demand
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DOMAIN DRIVEN DESIGN

Foreword by Martin Fowler
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The problems you are trying to solve with
microservices will drive *how™ you decompose them
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You need a clear idea of what you are trying to
achieve with microservices

@samnewman



‘‘‘‘‘‘

il ‘?C‘_ b

https://www.ﬂickr.oom/photos/orinrobertjohn/égf" i 04

=



Monolith

@samnewman



Monolith

@samnewman



Production

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
.....
*

Monolith

'S L 2
......
llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

@samnewman



Production

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
.....
*

Monolith

'S L 2
......
llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

@samnewman



You won't appreciate the true horror, pain and
suffering of microservices until you're running them in
production

@samnewman



“If you do a big bang rewrite, the only thing you’re
certain of is a big bang”

- Martin Fowler (paraphrased)
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So migration patterns we use must allow for
Incremental change



Patterns that allow for our architecture to
evolve, whilst still delivering features
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https://www.flickr.com/photos/cynren/16012074217/

IMPLEMENTING A STRANGLER FIG PATTERN
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1. Asset capture:

|[dentify the functionality to move to a new
Mmicroservice



1. Asset capture:

|[dentify the functionality to move to a new
Mmicroservice

2. Redirect calls

Intercept calls to old functionality,
and redirect to the new service



“MOVING” FUNCTIONALITY?
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It might be copy and paste



It might be copy and paste

More likely Is a total or partial rewrite
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GITHUB SCIENTIST

Scientist!
A Ruby library for carefully refactoring critical paths.

How do | science?

Let's pretend you're changing the way you handle permissions in a large web app. Tests can help guide your refactoring,
but you really want to compare the current and refactored behaviors under load.

require "scientist"

class MyWidget
def allows?(user)
experiment = Scientist::Default.new "widget-permissions"
experiment.use { model.check_user?(user).valid? } # old way
experiment.try { user.can?(:read, model) } # new way

experiment. run
end
end

Wrap a use block around the code's original behavior, and wrap try around the new behavior. experiment.run will
always return whatever the use block returns, but it does a bunch of stuff behind the scenes:

https://github.com/github/scientist

@samnewman


https://github.com/github/scientist

GITHUB SCIENTIST

Scientist! Alternatives

A Ruby library for carefully refactoring critical paths. e daylerees/scientist (PHP)

s scientistproject/scientist.net (.NET)

How do | science? e joealcorn/laboratory (Python)

. o . , o rawls238/Scientist4J (Java)
Let's pretend you're changing the way you handle permissions in a large web app. Tests can help guide your refactoring,

but you really want to compare the current and refactored behaviors under load. * tomiaijo/scientist (C++)
e trello/scientist (node.js)

require "scientist" ¢ ziyasal/scientist.js (node.js, ES6)

class MyWidget e veller/laboratory (Clojure)

def allows?(user) e |ancew/Scientist (Perl 5)
experiment = Scientist::Default.new "widget-permissions" S
experiment.use { model.check_user?(user).valid? } # old way ¢ lancew/ScientistP6 (Perl 6)

experiment.try { user.can?(:read, model) } # new way e MadcapJake/Test-Lab (Perl 6)
experiment. run e cwhbriones/scientist (Elixir)
end » calavera/go-scientist (Go)

end
e jelmersnoeck/experiment (Go)

Wrap a use block around the code's original behavior, and wrap try around the new behavior. experiment.run will * spoptchev/scientist (Kotlin / Java)

always return whatever the use block returns, but it does a bunch of stuff behind the scenes: e junkpiano/scientist (Swift)

https://github.com/github/scientist
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AVOID SHARING DATABASES!

@samnewman



AVOID SHARING DATABASES!

@samnewman



AVOID SHARING DATABASES!

@samnewman



AVOID SHARING DATABASES!

@samnewman



AVOID SHARING DATABASES!

lllllllllllllllllllllllllllllll

.---------------—

@samnewman



AVOID SHARING DATABASES!

HEE = = = = == == = == == == =N = = W
.---------------—

=

llllllllllllllllllllllllllllllll

@samnewman



AVOID SHARING DATABASES!
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SKU Date | Amount
! 123 14/7/19 | $4.55
456 14/7/19 | $7.67
Ledger

Monolith Database
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More network hops - latency can suffer

Lost enforcement of data consistency
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We can find out how
much something
costs...

...but can’t check stock
levels!
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Should we keep selling CDs in this
situation?



CAP Theory



CAP Theory

In a partition, you have to tradeoft
between consistency and availability



Take the money?



Take the money?

Favouring availability over consistency
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Don’t take the money?

Favouring consistency over availability
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This doesn’t have to be black
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Last view of stock: 1 hour ago Sell item
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Last view of stock: 1 hour ago Don’t sell 1tem
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Memories, Guesses, and Apologies

Rate this article

Pat Helland M - 200: m 5

Well, here I am blogging on the bus with my newly installed Windows Live Writer!!!

This blog is a text version of a five minute "Gong Show" presentation I did at CIDR (Conference on Innovative Database Research)
on Jan 8,2007.

All computing can be considered as: "Memories, Guesses, and Apologies". This is a personal opinion about how computers suck.
Furthermore, it offers additional opinions about how we can take advantage of their sucki-ness. Lets dig into this...

Newton and Einstein

It used to be that we thought of computing as one big-ass mainframe. The database folks only thought about the database.
Transactions (and transactional serializability) offered a crisp and clear perspective of how time marches forward uniformly. When
working on transaction T(i), any other transaction T(j) can be perceived as occurring before T(i) or after T(i). If T(i) and T(j) are
concurrently processed, the transaction system ensures that either order is correct without modifying the semantics. This offers a
crisp and clear perspective of now. Time marches forward like a clock exactly as Newton envisaged his universe.

Nowadays, we have lots and lots of computers. Big ones, small ones, connected, disconnected, occasionally connected, etc.
These computers each have their own perspective of time. When you see data, it is unlocked and an artifact of the past. Time is
subjective with many different notions of now. This is very much the way Einstein revamped our understanding of the universe.

Moving to SOA is like moving from Newton's Universe to Einstein's Universe.

https://blogs.msdn.microsoft.com/pathelland/2007/05/15/memories-guesses-and-apologies/
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