

Why do we rewrite
software?

Why do we usually
rewrite code?

1

Inexperience

2

It’s fun

3

Better solution
available

4

Technical
Debt

Technical debt

Code I didn’t write?

Old libraries? Code that negatively
and repeatedly affects the
speed or quality of delivery

Code I wrote before I knew
what I was doing?

Features that no one uses

Time

Speed
of adding

new features

😰

Technical debt

Time

Speed
of adding

new features

refactor

Recurring technical debt

😰

Second system
effect

The tendency of small, elegant, and
successful systems to be succeeded
by over-engineered, bloated systems

due to inflated expectations and
overconfidence.

“The Mythical Man Month: Essays on Software Engineering” - Frederick P. Brooks Jr.

“
“Legacy code” often

differs from its suggested
alternative by actually
working and scaling.”

- Bjarne Stroustrup, Inventor of C++

R

https://www.vectorstock.com/royalty-free-vector/ouroboros-snake-eating-its-own-tail-eternity-or-vector-12076546

ew

r i t e
Is this my destiny?

The real cost of software
is not the initial development,
but maintenance over time

HARD FACT

Why do we rewrite
software?

THE QUESTION IS NOT

How can we
make our systems

more resilient to
inevitable change

?

Time

Speed
of adding

new features

😰

Time

Speed
of adding

new features

🙃

“Good architecture”

How do we reach this
nirvana?

🙄

“Architecture” has
become a dirty word

Sounds elite
No clear definition

Feels detached from daily
problemsHard to spell

What does a software
architect even do?

Architecture as
enabling constraints

Constraints about how we use data and
code that help us move faster over time

🚘

Enabling
constraints in real life

OOP

Functional

Enabling constraints in
Programming paradigms

Paradigm Constraint & Enablement
From function pointers to classes→
Independently deployable
subcomponents

From mutable to immutable data →
Eliminate race conditions and
concurrency problems

var → const

Enabling constraints in
Frontend development

Paradigm Constraint & Enablement
No more reassignment →
Predictable data

jQuery → React No more DOM manipulation →
Predictable UI

CSS → CSS-in-JS No more naming / side-effects →
Safety and fewer global clashes

We are constraining
ourselves all the time

We trade constraints for
safety and speed

3 constraints
you can use today

for more resilient frontend
architecture

NOT EXHAUSTIVE

1 2 3

Constraint

Enables

Constraints for more resilient frontend architecture

1 2 3

Constraint

Enables

Constraints for more resilient frontend architecture

Source code dependencies
must point inward

A few ways of organizing our dependencies

Big Ball of Mud ModularLayered

Constraint
Source code

dependencies
must point inwards

What’s the difference?

Big Ball of Mud Layered

Constraint
Source code

dependencies
must point inwards

Big Ball of Mud Layered

changed

Constraint
Source code

dependencies
must point inwards

Big Ball of Mud Layered

changed

Huge or unknown regression scope
Cross-team conflicts

Constraint
Source code

dependencies
must point inwards

Ball of Mud Layered

changed *changed*

Constraint
Source code

dependencies
must point inwards

Ball of Mud Layered

changed *changed*

Limited regression scope
(Usually) does not affect other teams

Key difference between a ball of mud
and a well-organized monolith is

dependency organization

Constraint
Source code dependencies must point inwards

Constraint
Source code dependencies must point inwards

API / Data

UI Layer

Business logic

Router

Page 1 Page 2

For each page,
the rest of the application
does not even exist

1 2 3

Constraint

Enables

Constraints for more resilient frontend architecture

Source code dependencies
must point inward

Easier to isolate
impact of changes

What about shared components?
Design system 🎨 -or- copy-paste ✂

1 2 3

Constraint

Enables

Constraints for more resilient frontend architecture

Source code dependencies
must point inward

Easier to isolate
impact of changes

Be conservative
about code reuse

WE ♥ DRY

The result is often brittle and
side-effect ridden code

in the name of code reuse

Impact of time on shared code

Impact of time on shared code

if, context, branches…

DECOUPLED > DRY
Code reuse is not a goal in and of itself

Sometimes you just need two glasses!

1 2 3

Constraint

Enables

Constraints for more resilient frontend architecture

Source code dependencies
must point inward

Easier to isolate
impact of changes

Be conservative
about code reuse

Avoid coupling
code that diverges

over time

1 3

Constraint

Enables

Constraints for more resilient frontend architecture

Source code dependencies
must point inward

Easier to isolate
impact of changes

Enforce your
boundaries

2

Be conservative
about code reuse

Avoid coupling
code that diverges

over time

Router

Page

import

Other Page

Subcomponent

Business logic

Business logic

import

✂
Router

Page Other Page

Business logic

Business logic Subcomponent

Router

Page Other Page

Subcomponent

Business logic

Business logic

Router

Page Other Page

Subcomponent

Business logic

Business logic

Forbidden dependency
tests

BUILD FAILING

{
 "forbidden": [{
 "name": "Your Page",
 "comment": "Should not depend on other pages",
 "severity": "error",
 "from": { "pathNot": "^pages/YourPage" },
 "to": { "path": "^pages/YourPage" }
 }]
}

.dependency-cruiser.json

npm install --save-dev dependency-cruiser

Forbidden dependency
tests

1 2 3

Constraint

Enables

Constraints for more resilient frontend architecture

Source code dependencies
must point inward

Easier to isolate
impact of changes

Enforce your
boundaries

Preserve your
architecture

over time

Be conservative
about code reuse

Avoid coupling
code that diverges

over time

💰

The real cost of software
is maintenance over time,
because change is inevitable

🚘Architecture is about
applying enabling constraints
to how we use code and data

🐿
We can make small changes to
make our projects more
resilient (1. Think directionally,
2. Be conservative on reuse,
3. Enforce our boundaries)

What we’ve learned

Every time you write a function
(or don’t), create a new module

(or don’t), you’re making an
architecture decision

🐿

You don’t have to derive
architecture from

first principles

🚘

👋
Thank you!

@monicalent

