1 I

nifl

@GOTOber gotober.com

Building resilient
frontend architecture

Monica Lent §f @monicalent ‘

Why do we rewrite |

|
software?

Why dO We usua"y Inexperience It's fun
rewrite code?

Better solution Technical
available Debt

Old libraries? Code that negatively
and repeatedly affects the
Code | didn't write? speed or quality of delivery

Technical debt

Code | wrote before | knew Features that no one uses
what | was doing?

Technical debt

Speed
of adding
new features

Time

Recurring technical debt

Speed *refactor* ,’
of adding ’
new features ,'

Second system
effect

The tendency of small, elegant, and
successful systems to be succeeded
by over-engineered, bloated systems

due to inflated expectations and
overconfidence.

"The Mythical Man Month: Essays on Software Engineering” - Frederick P. Brooks Jr.

“Legacy code” often
differs from its suggested
alternative by actually
working and scaling.

- Bjarne Stroustrup, Inventor of C++

HARD FACT

The real cost of software
IS not the Initial development,
but maintenance over time

THE QUESTION IS NOT

Why do we rewrite |
software?

How can we
make our systems
more resilient to

Inevitable change
2

Speed
of adding
new features

Time

Speed
of adding
new features

Time

How do we reach this
nirvana?

“Good architecture”
-

Feels detached from daily
Hard to spell problems

No clear definition What does a software
Sounds elite architect even do?

"Architecture” has
become a dirty word

Architecture as
enabling constraints

Constraints about how we use data and
code that help us move faster over time

Enabling
constraints in real life

| —

Enabling constraints in
Programming paradigms

Paradigm Constraint & Enablement

OOP From function pointers to classes—
Independently deployable
subcomponents

Functional

From mutable to immutable data —
Eliminate race conditions and
concurrency problems

Enabling constraints in
Frontend development

Paradigm

var = const

jQuery — React

CSS = CSS-in-JS

Constraint & Enablement

No more reassignment —
Predictable data

No more DOM manipulation —
Predictable Ul

No more naming / side-effects —
Safety and fewer global clashes

We are constraining
ourselves all the time

We trade constraints for
safety and speed

3 constraints
you can use today
for more resilient frontend
architecture

Constraints for more resilient frontend architecture

{

'

©

{

Constraint

'

Enables

Constraints for more resilient frontend architecture

o 2, ©

Source code dependencies T T i
| must point inward I I & COnstraint
I [I
O O O Enables

A few ways of organizing our dependencies

Big Ball of Mud Layered Modular

== == I3

What's the difference? ‘w

Constraint Big Ball of Mud Layered

Source code . |
dependencies
must point inwards =

Constraint Big Ball of Mud Layered

Source code . |
dependencies
must point inwards =

changed

Huge or unknown regression scope

Cross-team conflicts
Constraint Blg Ball of Mud Layered

Source code e -
dependencies
must point inwards

changed

Constraint Ball of Mud Layered

Source code . |
dependencies
must point inwards =

changed *changed*

Limited regression scope

(Usually) does not affect other teams w
Constraint Ball of Mud Layered

Source code
dependencies
must point inwards

changed

Key difference between a ball of mud
and a well-organized monolith is
dependency organization

Constraint
Source code dependencies must point inwards

Constraint
Source code dependencies must point inwards

Router

APl / Data

For each page,

the rest of the application
does not even exist

Constraints for more resilient frontend architecture

Source code dependencies T T i
must point inward I I & COnstraint

| booov

Easier to isolate

_ Enables
impact of changes

What about shared components?

Design system ® -or- copy-paste 7°

Constraints for more resilient frontend architecture

Source code dependencies Be conservative T]
must point inward about code reuse O Constraint

o booov

Easier to isolate

Enables
impact of changes —

The result is often brittle and
side-effect ridden code
INn the name of code reuse

Impact of time on shared code

Impact of time on shared code

@
\

/
o o
/ 1\

if, context, branches...

DECOUPLED > DRY

Code reuse is not a goal in and of itself

@ J8D Following 2
@rakyll

A regular person sees it eitk
or half empty.
An enginee

12:58 AM - 25 Jan 2019

Constraints for more resilient frontend architecture

Source code dependencies Be conservative T

| must point inward about code reuse O Constraint
Easier to isolate Avoid coupling Enables

impact of changes code that diverges
over time

Constraints for more resilient frontend architecture

Source code dependencies Be conservative Enforce your

| must point inward about code reuse boundaries Constraint
Easier to isolate Avoid coupling Enables

impact of changes code that diverges
over time

Router

o\
Page “/ \‘ Other Page
/x

Business logic ‘ inport

N
‘ ‘ Subcomponent

Business logic

Router

@
/7 a\
Page ‘
/

Business logic ‘ inport

‘ Other Page

‘ ‘ Subcomponent

\ ‘ ; Business logic

Router

Page ‘ ‘ Other Page
/

Business logic e

1\
‘ ‘ Subcomponent

| Business logic
@

Router

Page ‘ ‘ Other Page
/

Business logic e

1\
‘ ‘ Subcomponent

| Business logic
®

Forbidden dependency

tests

@
7=\
® -0
AT

AN
& X R
“!
BUILD FFAILING

Forbidden dependency
tests

.dependency-cruiser.json

"forbidden": [{
“"name": "Your Page",
""comment": "Should not depend on other pages",

"severity": "error",
"from": { "pathNot": "~pages/YourPage" },
"to": { "path": "~pages/YourPage" }

npm install —-—save-dev dependency-cruiser

Constraints for more resilient frontend architecture

Source code dependencies Be conservative Enforce your i
| must point inward about code reuse boundaries Constraint
| Easier to isolate Avoid cou_pling Prese_rve your Enables
impact of changes code that diverges architecture

over time over time

The real cost of software
IS maintenance over time,
because change is inevitable

What we've learned

e —

/—> — We can make small changes to
Architecture is about Y p—

_ _ _ make our projects more
applying enabling constraints resilient (1. Think directionally,
to how we use code and data

2. Be conservative on reuse,
3. Enforce our boundaries)

o

Every time you write a function
(or don't), create a new module
(or don't), you're making an
architecture decision

You don't have to derive
architecture from
first principles

¥

Thank you!

@monicalent

> A
=
\ ri= RN
ZEZm=maaN

1

nifl

@GOTOber gotober.com

