
@kmugrage

Modern Continuous Delivery
A journey in four acts

WHO AM I?  
KEN MUGRAGE

10 YEARS WORKING WITH
THOUGHTWORKS CD CLIENTS

GLOBAL ORGANIZER FOR
DEVOPSDAYS

IN DENIAL ABOUT PEOPLE USING
DEVOPS ENGINEER AS A JOB TITLE

THOUGHTWORKS OFFICE OF THE CTO

UNITED KINGDOM – 2005

ACT I

@kmugrage

We knew everything

● Signed Agile Manifesto
● Defined Continuous Integration
● Created the first (or second) CI server
● Created Selenium

@kmugrage

Java – Write once, run anywhere

● Developed a system on Windows laptops to be deployed to a Solaris cluster
● Did all the right Continuous Integration things
● One small issue…

It didn’t work in production

@kmugrage

Conan The Deployer

● Massive shell script
● Automated deployment to a cluster after every successful CI run
● Deployment became a non-issue

@kmugrage

The Output

● Jez Humble, Dan North and Chris Read write “The Deployment Product Line”
● Jez Humble and David Farley release the book “Continuous Delivery“
● Continuous Delivery becomes an expectation

UNITED KINGDOM – 2010

ACT II

@kmugrage

Fairly typical architecture

Edge Load
Balancer

Web
Application

Web
Application

Customer Service
Application

Web
Application

Customer Service
Application

Frontend Application Servers

Web
Application

Web
Application

Web
Application

Business
Servers

Business
Servers

Business
Servers

MSMQ

Biztalk

Distributed
Cache

Session DB Transactional DB Biztalk DB

@kmugrage

Traditional Continuous Delivery

git pull

Version

Build

Unit Test

Package

Artifact 
Repository

Build Test

Artifact
Repository

Get Package

Deploy Test
Environment

Component

Service

UICertified
Version

Deploy

Artifact 
Repository

Get Package

Deploy
Environment

Smoke Tests

@kmugrage

Traditional Continuous Delivery

Build

Functional
Tests

Regression
Tests

Deploy to
Stage Deploy to Production

Artifact Repository

Hand rolled environments

Performance
Tests

@kmugrage

● Reproducible builds
● Generate package once
● High level of automation
● Safety net with automated test stages

The Good

@kmugrage

The Bad

● Entire system deployed at once
● Releases were large
● Browser tests were flaky
● Rollbacks were hard

@kmugrage

The Output

● Sam Newman releases the book “Building Microservices”
● Kief Morris releases the book “Infrastructure as Code”
● Created Gauge open source testing framework
● Created Taiko to combat flaky browser tests

UNITED STATES – 2019

ACT III

@kmugrage

Financial Services Platform

Edge Load Balancer

Service
Repository

Apply Domain

Event Store

Command Handlers

Event Handlers

Service
Repository

Account Domain

Event Store

Command Handlers

Event Handlers

Service
Repository

Product Domain

Event Store

Command Handlers

Event Handlers

Service
Repository

Customer Domain

Event Store

Command Handlers

Event Handlers

E
V
E
N
T

B
U
S

Command Handlers

@kmugrage

Modern Pipelines

Build

Functional
Tests

Regression
Tests

Deploy to
Stage

Deploy to
Production

Service A

Service B

Build

Functional
Tests

Regression
Tests

Deploy to
Stage

Deploy to
Production

THE DETAILS

ACT IV

@kmugrage

Traditional Structure

Development Teams QA Team Operations Team

@kmugrage

Renaming Ops isn’t a solution

Development Teams QA Team DevOps Team

@kmugrage

Products over Projects (do the DevOps)

Service 1

Service 2

Service 5

Service 6

Service 3

Service 4

@kmugrage

WITHOUT EVENTS

User Service

Quote Service
Address Service

Billing Service
New Service

@kmugrage

EVENT NOTIFICATION

User Service

Quote Service Address Service Billing Service New Service

@kmugrage

Develop Build

Test

Deploy

Monitor

@kmugrage

The New Build Artifact

git pull

Version

Build

Unit Test

Package

Docker File

thoughtworks/gocd-server:v18.10

@kmugrage

A modern Continuous delivery pipeline

@kmugrage

Trunk Based Development

TRUNK

RELEASE BRANCHES

RELEASE 1.1.x HOTFIX

CHERRYPICK CHERRYPICK

COMMIT

DEVELOPERS SHORT-LIVED DEVELOPMENT BRANCHES

COMMIT

@kmugrage

Feature Toggles

@kmugrage

Develop Build

Test

Deploy

Monitor

@kmugrage

The Test Pyramid

UNIT TESTS

Slow,
Expensive

Fast,
Cheap

SERVICE TESTS

UI
 TESTS

@kmugrage

The Test Pyramid In Context

Build Test Deploy to Stage

Deploy to
Production

UNIT TESTS

Slow,
Expensive

Fast,
Cheap

Monitoring
Distributed Tracing

Fault-injection Testing

Canary Deployments
Blue-Green Deployments

A/B TestingINTEGRATION TESTS

COMPONENT TESTS

CONTRACT TESTS

E2E
TESTS

Build Test Deploy to StageDeploy to StageDeploy to StageDeploy to StageDeploy to StageDeploy to Stage

@kmugrage

Declarative Deployments

services
db

volumes

load balancer

YAML
deployment descriptor

Ingress

Service
Node

Pod

Deployment

Pod

Node

Pod

PodReplica Set

@kmugrage

Deployment Strategies

Load Balancer

V1 V1 V2

Load Balancer

V1 V2 V2

Load Balancer

V2 V2 V2

Rolling Update

Load Balancer

V1 V1

Load Balancer

V2V2 V1 V1 V2V2

Blue Green Deployment

Load Balancer

V1 V1 V2

Canary Deployment
25%75%

@kmugrage

Release DB Changes Out Of Band

D B
V 1

A P P
V 1

D B
V 2

A P P
V 2

R O L L B A C K
A P P V 2

TimeDB V1 App uses
DB V1

DB
migrated

to V2

App uses
DB V2 App rolled

back to V1

@kmugrage

Monitoring and observability

Hardware metrics
(CPU, Memory, IO)

App/Business metrics
(CPU, Memory, IO)

Logs

Metrics Collector

Metrics Collect & Ship Aggregate & Store Visualize

Typical Monitoring Setup

@kmugrage

Monitoring and observability

High cardinality events

honeycomb.io

Observability

@kmugrage

Develop Build

Test

Deploy

Monitor

Secure

@kmugrage

Develop Build

Test

Deploy

Monitor

Secure

@kmugrage

Vulnerability Planning

Build

Functional Tests

Regression
Tests

Deploy to Stage Deploy to Production

Static CVE Scan Scan Images Monitor Runtime ContinuersMonitor Runtime Continuers

@kmugrage

Secrets Management

Continuous Delivery
Workflow

ORCHESTRATOR
(Chef / Terraform /Kubernetes)

Application Server /
Container

Fetch RoleID

Write RoleID

Machine/Container
Image

Deliver Secret ID
(Auth Token) to
the Application

Use Auth Token To Access Secrets

Trusted Entity

EPILOGUE

@kmugrage

In the future

● Teams must be structured to own small pieces
● Docker and Kubernetes are here to stay… until they aren’t
● You must test in production. Own it and architect for it
● Security is everybody’s job

@kmugrage

Resources & Citations

● http://agilemanifesto.org/
● https://martinfowler.com/articles/originalContinuousIntegration.html
● https://continuousdelivery.com/wp-content/uploads/2011/04/

deployment_production_line.pdf
● https://martinfowler.com/articles/microservice-trade-offs.html
● https://martinfowler.com/articles/practical-test-pyramid.html
● https://trunkbaseddevelopment.com/
● https://martinfowler.com/articles/feature-toggles.html
● https://docs.honeycomb.io/learning-about-observability/intro-to-observability/
● https://martinfowler.com/articles/201701-event-driven.html

Thank You
Ken Mugrage - @kmugrage

@kmugrage

