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Modern Continuous Delivery
A journey in four acts
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UNITED KINGDOM – 2005

ACT I
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We knew everything

● Signed Agile Manifesto
● Defined Continuous Integration
● Created the first (or second) CI server
● Created Selenium
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Java – Write once, run anywhere

● Developed a system on Windows laptops to be deployed to a Solaris cluster
● Did all the right Continuous Integration things
● One small issue…



It didn’t work in production
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Conan The Deployer

● Massive shell script
● Automated deployment to a cluster after every successful CI run
● Deployment became a non-issue
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The Output

● Jez Humble, Dan North and Chris Read write “The Deployment Product Line”
● Jez Humble and David Farley release the book “Continuous Delivery“
● Continuous Delivery becomes an expectation



UNITED KINGDOM – 2010

ACT II
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Fairly typical architecture
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Traditional Continuous Delivery
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Traditional Continuous Delivery
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● Reproducible builds
● Generate package once 
● High level of automation 
● Safety net with automated test stages 

The Good



@kmugrage

The Bad

● Entire system deployed at once
● Releases were large
● Browser tests were flaky
● Rollbacks were hard
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The Output

● Sam Newman releases the book “Building Microservices”
● Kief Morris releases the book “Infrastructure as Code”
● Created Gauge open source testing framework
● Created Taiko to combat flaky browser tests



UNITED STATES – 2019

ACT III
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Modern Pipelines
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THE DETAILS

ACT IV
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Traditional Structure

Development Teams QA Team Operations Team
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Renaming Ops isn’t a solution

Development Teams QA Team DevOps Team
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Products over Projects (do the DevOps)
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WITHOUT EVENTS

User Service

Quote Service
Address Service

Billing Service
New Service
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EVENT NOTIFICATION

User Service

Quote Service Address Service Billing Service New Service
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Develop Build

Test

Deploy

Monitor
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The New Build Artifact

git pull

Version

Build

Unit Test

Package

Docker File

thoughtworks/gocd-server:v18.10
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A modern Continuous delivery pipeline 
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Trunk Based Development
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COMMIT
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Feature Toggles
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Develop Build

Test

Deploy

Monitor
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The Test Pyramid
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The Test Pyramid In Context
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Declarative Deployments

services
db

volumes

load balancer 

YAML  
deployment descriptor

Ingress

Service
Node

Pod

Deployment

Pod

Node

Pod

PodReplica Set



@kmugrage

Deployment Strategies

Load Balancer
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Release DB Changes Out Of Band
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Monitoring and observability

Hardware metrics 
(CPU, Memory, IO)

App/Business metrics
(CPU, Memory, IO)
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Metrics Collector
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Typical Monitoring Setup
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Monitoring and observability

High cardinality events

honeycomb.io

Observability
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Develop Build
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Deploy
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Vulnerability Planning
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Secrets Management

Continuous Delivery 
Workflow

ORCHESTRATOR
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EPILOGUE
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In the future

● Teams must be structured to own small pieces
● Docker and Kubernetes are here to stay… until they aren’t
● You must test in production. Own it and architect for it
● Security is everybody’s job
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Resources & Citations

● http://agilemanifesto.org/
● https://martinfowler.com/articles/originalContinuousIntegration.html
● https://continuousdelivery.com/wp-content/uploads/2011/04/

deployment_production_line.pdf
● https://martinfowler.com/articles/microservice-trade-offs.html
● https://martinfowler.com/articles/practical-test-pyramid.html
● https://trunkbaseddevelopment.com/
● https://martinfowler.com/articles/feature-toggles.html
● https://docs.honeycomb.io/learning-about-observability/intro-to-observability/
● https://martinfowler.com/articles/201701-event-driven.html



Thank You
Ken Mugrage - @kmugrage
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