SSL/TLS FOR
MORTALS

TROUBLESHOOTING TIME

Exception in thread "main" javax.net.ssl.SSLHandshakeException: sun.security.validator.ValidatorException: PKIX path building failed: su
at sun.security.ssl.Alerts.getSSLException(Alerts.java:192)
at sun.security.ssl.SSLSocketImpl.fatal(SSLSocketImpl.java:1949)
at sun.security.ssl.Handshaker.fatalSE(Handshaker.java:302)
at sun.security.ssl.Handshaker.fatalSE(Handshaker. java:296)
at sun.security.ssl.ClientHandshaker.serverCertificate(ClientHandshaker.java:1506)
at sun.security.ssl.ClientHandshaker.processMessage(ClientHandshaker. java:216)
at sun.security.ssl.Handshaker.processLoop(Handshaker.java:979)
at sun.security.ssl.Handshaker.process_record(Handshaker.java:914)
at sun.security.ssl.SSLSocketImpl.readRecord(SSLSocketImpl.java:1062)
at sun.security.ssl.SSLSocketImpl.performInitialHandshake(SSLSocketImpl.java:1375)
at sun.security.ssl.SSLSocketImpl.startHandshake(SSLSocketImpl.java:1403)
at sun.security.ssl.SSLSocketImpl.startHandshake(SSLSocketImpl.java:1387)
at sun.net.ww.protocol.https.HttpsClient.afterConnect(HttpsClient.java:559)
at sun.net.ww.protocol.https.AbstractDelegateHttpsURLConnection.connect(AbstractDelegateHttpsURLConnection.java:185)
at sun.net.ww.protocol.http.HttpURLConnection.getInputStream@(HttpURLConnection.java:1512)
at sun.net.ww.protocol.http.HttpURLConnection.getInputStream(HttpURLConnection.java:1440)
at sun.net.ww.protocol.https.HttpsURLConnectionImpl.getInputStream(HttpsURLConnectionImpl.java:254)
at it.mulders.maarten.Demo.main(Demo.java:13)
Caused : sun.security.validator.ValidatorException: PKIX path building failed: sun.security.provider.certpath.SunCertPathBuilderExcept
at .security.validator.PKIXValidator.doBuild(PKIXValidator. java:387)
at .security.validator.PKIXValidator.engineValidate(PKIXValidator.java:292)
at .security.validator.Validator.validate(Validator.java:260)
at .security.ssl.X509TrustManagerImpl.validate(X509TrustManagerImpl. java:324)
at .security.ssl.X509TrustManagerImpl.checkTrusted(X509TrustManagerImpl.java:229)
at .security.ssl.X509TrustManagerImpl.checkServerTrusted(X509TrustManagerImpl.java:124)
at .security.ssl.ClientHandshaker.serverCertificate(ClientHandshaker.java:1488)
.ee more
Caused : sun.security.provider.certpath.SunCertPathBuilderException: unable to find valid certification path to requested target
at .security.provider.certpath.SunCertPathBuilder.build(SunCertPathBuilder.java:146)
at security.provider.certpath.SunCertPathBuilder.engineBuild(SunCertPathBuilder.java:131)
at java.security.cert.CertPathBuilder.build(CertPathBuilder.java:280)
at sun.security.validator.PKIXValidator.doBuild(PKIXValidator.java:382)

WHY BOTHER?

Using SSL/TLS correctly is often hard to achieve... and
understand!

Crucial for secure connection between systems

Globally deployed (intra-)cloud applications

'/ LAYERS OF OS| MODEL

data unit layers

Application

Network Process to Application

Data

Presentation
Data Data Representation
and Encryption

Session

Interhost Communication

Data

Host Layers
A

Transport
Segments End-to-End Connections
and Reliability

Network
Packets Path Determination and
Logical Addressing (IP)

Data Link
Frames Physical Addressing
(MAC and LLC)

: Physical
Bits Media, Signal and
Binary Transmission

Media Layers
A

HISTORY OF SSL & TLS

SSL1.0 never released

SSL2.0 1995 - 2011 (POODLE)

SSL3.0 1996 - 2014 (POODLE)

TLS1.0 1999 - 2011 (BEAST)

TLS 1.1 2006

TLS 1.2 2008

TLS 1.5 2018

DEMO TIME =

What's the issue?!

HOW TO PREVENT
THIS?

1. public/private key encryption
2. signhed certificates
3. certificate authorities

1. PUBLIC & PRIVATE
KEY ENCRYPTION

PUBLIC KEY KRUPTO

PUBLIC KEY KRUPTO

g@
A
@)
)

!%ﬁ
§
N

N |,

@)
>
=
Al

L
Ry

instructions.com/public-key,

MATH TIME!

1. Select two prime numbers:p = 11,qg = 17
2. Calculate modulo: p x g = 187
3. Select random number < modulo: e = 3
4. Findd,sothat(d*e)—1 mod (p—1)%x(g—1)=0
a.(d+*3)—1 mod (10%16) =0
b.320 mod 160 =0
c.(321 — 1) mod 160 =0
d. (107 % 3) = 321 =d = 107

Note that d varies with e: when e = 75, d = 183.

Now, WHAT IF P AND Q ARE

UNKNOWN?

Lpxqg=299,e=35
2.Findd,sothat(d*e)—1 mod (p—1)%x(g—1)=0

Pretty hard without knowing p and ¢!

As soon as we know p = 13, g = 23, calculating d = 317 is trivial
(again).

For big enough p and g, finding those factors will cost an
eternity!

So we can distribute p * g and even ée!

LET'S ENCRYPT "G"
pxq=187,e=3,G ="

7¢ =70 =343

343 mod 187 = 156

LET'S DECRYPT "156"

Since we know p and g, we can calculate d = 107
1567 = 156" ~ 4.6 x 10>

156" mod 187 =7
7= G

NEGOTIATING A SECURE CONNECTION

Client Server
1 ClientHello
2 ServerHello
3 Certificate
4 ServerKeyExchange
5 ServerHelloDone
6 ClientKeyExchange
7 ChangeCipherSpec
8 Finished
9 ChangeCipherSpec
10 Finished

DEMO TIME =

No-one is eavesdropping!

2. SIGNED
CERTIFICATES

A certificate contains:

e Serial Number

e Subject

e Validity

e Usage

e Public Key

e Fingerprint Algorithm
e Fingerprint

But wait... anyone could create a certificate!
So we also need

e Signature Algorithm
e Signature
e |ssuer

.. and a way to sign certificates.

(1]
PUBLIC KEY KRUPTO e by a0 I
v1.0, CC by-nc-sa 4.0
-

=l
VrEN @ e

A
4@ | j
=) f
‘AR B
{f }
4B | j

A signhature is a mathematical relationship between a message
X, a private key sk and a public key pk.

It consists of two functions:

1. signing function t = f(sk, x)
2. verifying function [accept, reject] = g(pk, t, x)

So, given x and t and knowing pk, we can tell if x is indeed
signed by sk.

3. CERTIFICATE
AUTHORITIES

An entity that issues digital certificates,
certifying the ownership of a public key

by the subject of the certificate.

{9

| can trust you, because | trust John, and
John trusts Alice, and Alice trusts you.

.

So, who is John, anyway?

Many John's in todays browsers and operating systems!

Top-notch security procedures, including "key ceremonies"

And yet...

! Once upon a time, a Dutch certificate
authority named DigiNotar was living
happily and carefree in the town of
Beverwijk.

éé

- An attacker compromised a webserver of |
; DigiNotar due to a vulnerability that is =
! present within the DotNetNuke software.

DotNetNuke version 4.8.2.0 is installed on

host winsrv1i9. This version is affected by a

file upload vulnerability.

Due to the weak security of Windows
passwords it must be assumed that the
attacker was able to compromise the
passwords [...] of the accounts found on the
system. On the system, [...] the domain
administrator account [...] is present.

éé |

The attacker was able to traverse the
INnfrastructure and obtain access to at leqast
two CA's that were used to generate

certificates.

/** intentionally left blank */

WHAT HAPPENED NEXT

o Google blacklists 247 certificates in Chromium

e Microsoft removes the DigiNotar root certificate from all
supported Windows-releases *

e Mozilla revokes trust in the DigiNotar root certificate in all
supported versions

o Apple issued Security Update 2011-005

e Update Certificate Revocation Lists (although these are self-
sighed)

DEMO TIME =

Trust (for what it's worth)

TOOLS, TIPS & [RICKS

e Simple HTTP client with TLS support:
curl -v -k <address>

e Troubleshoot trust issues and see certificates being used:
openssl s client -showcerts -servername <address> -
connect <address>:443

e Troubleshoot supported protocols, ciphers, ...
nmap --script ssl-enum-ciphers -p 443 <address>

JVM SETTINGS

-Djavax.net.ssl.trustStore=<file>

Denotes where a truststore can be found: a file that contains
trusted certs.

-Djavax.net.ssl.trustStorePassword=changeit
Is the password to that file.

JVM SETTINGS

-Djavax.net.ssl.keyStore=<file>

Denotes where a keystore can be found: a file that contains
public and/or private keys.

-Djavax.net.ssl.keyStorePassword=changeit
Is the password to that file.

JVM SETTINGS

-Djavax.net.debug=ssl[:flag]
Include debug logging for TLS handshake and connections.

Additional flags:

record session sessioncache pluggability plaintext

handshake defaultctx keymanager data packet

keygen sslctx trustmanager verbose

PORTECLE

| BON =
File Tools Examine Help

Rla @ B8 8 EH B R @

@ Alias Name

Last Modified

rheapolkdock01.rhea.infosupport.net
% simulator
smtp-server

3 Aug 2015, 15:32:37 CEST
3 Aug 2015, 14:12:49 CEST
29 Mar 2016, 12:35:04 CEST

Keystore type: JKS, provider: SUN, size: 3 entries

IMAGE ATTRIBUTIONS

Public Key Krupto by) ,and ()
Puss In Boots by
Beverwijk by @

siiiy GOTO Berlin Maarten Mulders (@mthmulders)

https://www.ibr.cs.tu-bs.de/users/fekete/
https://morr.cc/
http://mo.tu-bs.de/staff/stiller/
https://twitter.com/ideainstruction
https://www.kisspng.com/png-puss-in-boots-donkey-shrek-princess-fiona-gingerbr-88720/
https://commons.wikimedia.org/wiki/User:Gmhogervorst
https://commons.wikimedia.org/wiki/File:Nzkanaal2.jpg

