
The 7 quests of resilient software design

A guide for the adventurous software engineer

Uwe Friedrichsen (codecentric AG) – GOTO Berlin – Berlin, 2. November 2018

Uwe Friedrichsen

IT traveller.

Dot Connector.

Cartographer of uncharted territory.

Keeper of timeless wisdom.

CTO and Fellow at codecentric.

https://www.slideshare.net/ufried

https://medium.com/@ufried
 @ufried

You want to do resilient software design ...

... and you expect everything to be like this

But somehow it feels more like that ...

... or even that

What the **** went wrong?

The road to resilience is a twisted one

“7 quests you must complete!”

Quest #1

Understand the business case

“How much money will we earn with it?”

“Does it improve our velocity?”

Resilience is not about making money

Resilience is about not losing money

Lack of resilient software design

Reduced system availability

Users cannot do what they intend to do

Less transactions per time period

Immediate lost revenue

Users get annoyed

Churn rate increases

Delayed lost revenue

Due to non-determinism
of distributed systems

This is at most your
resilience budget

Quest #2

Embrace distributed systems

Everything fails, all the time.

-- Werner Vogels

If X then Y

What we learned in our IT education

If X then maybe Y

This changes

everything!

What we need for distributed systems

We are good at this (due to how our brains work)

Inside process thinking

Reasoning about
deterministic behavior

Designing a complicated system

We are poor at that (due to how our brains work)

 Reasoning about�
non-deterministic behavior

Across process thinking

Designing a complex system

Yet, we usually use deterministic thinking

to reason about distributed systems

Failures in distributed systems ...

•  Crash failure

•  Omission failure

•  Timing failure

•  Response failure

•  Byzantine failure

... turn seemingly simple issues into very hard ones

Time & Ordering

Leslie Lamport

"Time, clocks, and the
ordering of events in
distributed systems"

Consensus

Leslie Lamport

”The part-time
parliament”�
(Paxos)

CAP

Eric A. Brewer

"Towards robust
distributed systems"

Faulty processes

Leslie Lamport,
Robert Shostak,
Marshall Pease

"The Byzantine
generals problem"

Consensus

Michael J. Fischer,
Nancy A. Lynch,
Michael S. Paterson

"Impossibility of
distributed consensus
with one faulty
process” (FLP)

Impossibility

Nancy A. Lynch

”A hundred
impossibility proofs
for distributed
computing"

Embrace distributed systems

•  Distributed systems introduce non-determinism regarding

•  Execution completeness

•  Message ordering

•  Communication timing

•  You will be affected by this at the application level

•  Don’t expect your infrastructure to hide all effects from you

•  Better have a plan to detect and recover from inconsistencies

But do I really need to care?

(The system, I am working on, is not a distributed system)

(Almost) every system is a distributed system

-- Chas Emerick

http://www.infoq.com/presentations/problems-distributed-systems

… and it’s getting “worse”

•  Cloud-based systems

•  Microservices

•  Zero Downtime

•  Mobile & IoT

•  Social Web

Quest #3

Avoid the “100% available” trap

The “100% available” trap, version #1

You: “How should the application respond if a technical failure occurs?”

Business owner: “This must not happen! It is your responsibility to make�

sure that this will not happen.”

The “100% available” trap, version #2

You: “How do you handle the situation if the service you call does not�

respond (or does not respond timely)?”

Developer 1: “We did not implement any extra measures. The other service�

is so important and thus needs to be so highly available that it is�

not worth any extra effort.”

Developer 2: “Actually, if that service should be down, we would not be able�

to do anything useful anyway. Thus, it just needs to be up.”

The question is not, if a failure will happen

The question is, when a failure will happen

A short note about availability

Assume a service availability of 99,5% (incl. planned downtimes)

•  10 services involved in a request à 95,1% probability of success

•  50 services involved in a request à 77,8% probability of success

Quest #4

Establish the ops-dev feedback loop

The big wall between Dev and Ops

In a distributed environment, you cannot solve

availability issues on an infrastructure level only

Dev
 Ops

“I implemented something to
improve production availability”

“Here are the figures
how it worked”

Continuous improvement cycle
of resilient software design

Dev is where you
implement your

resilience measures

Build

Measure
Learn

Ops is where your
resilience measures

take effect

Dev
 Ops

“I implemented something to
improve production availability”

“Here are the figures
how it worked”

Continuous improvement cycle
of resilient software design

Dev is where you
implement your

resilience measures

Build

Measure
Learn

Ops is where your
resilience measures

take effect

All developer activities towards
improving robustness are basically

“shooting at the dark” which is neither
effective nor sustainable

Having a wall between Dev and Ops
breaks the cycle required to implement

effective robustness measures

Access to�
infrastructure level

incl. monitoring

Access to�
application level incl.
resilience measures

For effective resilient software design

you need a working ops-dev feedback loop

Establishing the feedback loop

•  Adopt DevOps

•  Adopt Site Reliability Engineering (SRE)

•  Or do it your own way if you know a better way ...

•  ... but make sure you establish the required feedback loops!

Quest #5

Master functional design

Without proper functional design

nothing else matters

Isolation

•  System must not fail as a whole

•  Split system in parts and isolate parts against each other

•  Avoid cascading failures

•  Foundation of resilient software design

Bulkhead

•  Bulkheads implement the “parts” that need to be isolated

•  Core isolation pattern (a.k.a. “failure units” or “units of mitigation”)

•  Diverse implementation choices available, e.g., (micro)services, actors, SCS, ...

•  Shaping good bulkheads is a pure functional design issue (and extremely hard)

Hmm, sound easy. Why should that be hard?

Service A
 Service B
Request

Due to functional design, Service A
always needs backing from Service B
to be able to answer a client request,

i.e. the isolation is broken by design

How do we avoid this …

Service

Request

Due to functional design we need
to call a lot of services to be able

to answer a client request,

i.e. availability is broken by design

... and this ...

Service

Service

Service
 Service

Service

Service

Service

Service

Service

Service

Service

Service

Mothership Service

(a.k.a. Monolith)

Request

By trying to avoid the aforementioned
issues we ended up with cramming all
required functionality in one big service

i.e. the isolation is broken by design

... without ending up with this?

Let us apply our well-known best practices

•  Divide & conquer a.k.a. functional decomposition

•  DRY (Don’t Repeat Yourself)

•  Design for reusability

•  Layered architecture

•  …

Unfortunately ...

Service A
 Service B
Request

Due to functional design, Service A
always needs backing from Service B
to be able to answer a client request,

i.e. the isolation is broken by design

... this usually leads to this …

Service

Request

Due to functional design we need
to call a lot of services to be able

to answer a client request,

i.e. availability is broken by design

... and this ...

Service

Service

Service
 Service

Service

Service

Service

Service

Service

Service

Service

Service

Mothership Service

(a.k.a. Monolith)

Request

By trying to avoid the aforementioned
issues we ended up with cramming all
required functionality in one big service

i.e. the isolation is broken by design

... and in the end also often to this.

Welcome to distributed hell!

Caches to the rescue!

Service A
 Service B
Request

Due to functional design, Service A
always needs backing from Service B
to be able to answer a client request,

i.e. the isolation is broken by design

Ca
ch

e
of

 B

Break tight service coupling
by caching data/responses

of downstream service

Caches to the rescue?

Do you really think�
 that copying stale data all over your system

is a suitable measure �
to fix an inherently broken design? *

* Side note: Caches are a very important and powerful measure in many places. But they are not suitable as a cheap fix for a broken functional design

We have to re-learn design

for distributed system

No silver bullet

Yet, a few guiding thoughts ...

Foundations of design

•  “High cohesion, low coupling” & “separation of concerns”

•  “Crucial across process boundaries

•  Still poorly understood issue

•  Start with

•  Understanding organizational boundaries

•  Understanding use cases and flows

•  Identifying functional domains (à DDD)

•  Finding areas that change independently

•  Do not start with a data model!

Short activation paths

•  Long activation paths affect availability

•  Increase likelihood of failures

•  Minimize remote calls per request

•  Need to balance opposing forces

•  Avoid monolith à clear separation of concerns

•  Minimize requests à cluster functionality & data

•  Caches can sometimes help, but stale data as trade-off

Be (extremely) wary of reusability

•  Reusability increases coupling

•  Reusability usually leads to bad service design

•  Reusability compromises availability

•  Reusability rarely pays

•  Do not strive for reusable services

•  Strive for replaceable services instead

•  Try to tackle reusability issues with libraries

Quest #6

Know your toolbox

Core

Detect
 Treat

Prevent

Recover

Mitigate
 Complement

Supporting
patterns

Redundancy

Stateless

Idempotency

Escalation

Zero downtime

deployment

Location
transparency

Relaxed
temporal

constraints

Fallback

Shed load
Share load

Marked data
 Queue for
resources

Bounded queue

Finish work in
progress

Fresh work
before stale

Deferrable work

Communication
paradigm

Isolation

Bulkhead

System level

Monitor

Watchdog

Heartbeat

Either level

Voting

Synthetic
transaction

Leaky

bucket

Routine�
checks

Health
check

Fail fast

Let sleeping dogs lie

Small releases

Hot deployments

Routine maintenance

Backup request

Anti-fragility

Diversity
 Jitter

Error
injection
Spread the news

Anti-entropy

Backpressure

Retry

Limit retries

Rollback
 Roll-forward

Checkpoint
 Safe point

Failover

Read repair

Error

handler

Reset

Restart

Reconnect

Fail silently

Default value

Node level

Timeout

Circuit breaker

Complete
parameter
checking

Checksum

Statically

Dynamically

Confinement

Acknowledgement

Using resilience patterns

•  Patterns are options, not obligations

•  Don’t pick too many patterns

•  Each pattern increases complexity

•  Complexity is the enemy of robustness

•  Each pattern costs money in dev & ops

•  You only have a limited resilience budget

•  Look for complementary patterns

How other people did it

Core

Detect
 Treat

Prevent

Recover

Mitigate
 Complement

Supporting
patterns

Escalation

Communication
paradigm

Isolation

System level

Monitor

Heartbeat

Either level

Hot deployments

Restart
 Let it crash!

Node level

Actor

Messaging

Erlang (Akka)

Core patterns

Core

Detect
 Treat

Prevent

Recover

Mitigate
 Complement

Supporting
patterns

Fallback

Share load

Bounded
queue

Communication
paradigm

Isolation

System level

Monitor

Either level

Error
injection

Retry

Limit retries

Node level

Circuit breaker

Timeout

Zero downtime

deployment

Canary releases

Redundancy

Several variants

(Micro)service

Request/
response

Netflix

Core patterns

Quest #7

Preserve the collective memory

We face a new generation of developers

every 5 years

We loose our collective memory

every 5 years *

* Mean time until a topic discussion in the community starts over form scratch

Time working in IT

Growth of
knowledge

Depth of
insights

What do we do to compensate this effect?

We look for the new & shiny stuff ...

... as anything not new must be useless crap!

We need to rediscover our insights

every 5 years

In IT, we suffer from

continuous collective amnesia

and we are even proud of it!

How can we become better?

Wrap-up

The 7 quests at a glance

Wrap-up

•  The road to resilient software design is a twisted one!

•  Most challenges are only indirectly related to RSD

•  Most challenges are not coding related

•  Mastering functional design is extremely hard ...

•  ... while learning the patterns is relatively easy

•  How do we preserve our collective memory?

Uwe Friedrichsen

IT traveller.

Dot Connector.

Cartographer of uncharted territory.

Keeper of timeless wisdom.

CTO and Fellow at codecentric.

https://www.slideshare.net/ufried

https://medium.com/@ufried
 @ufried

