
@allardbz

Event-Driven Microservices 
Not (just) about events

Allard Buijze
Founder & CTO, AxonIQ
 

allard@axoniq.io
@allardbz

@allardbz

Layered architecture
User Interface

Service Layer

Data Access Layer

D
om

ain M
odel

@allardbz

Service

Service

Service

@allardbz

‘Normal’ SQL QUERY

22 JOINS 6 SUBQUERIES

@allardbz

Layered architecture
User Interface

Service Layer

Data Access Layer

D
om

ain M
odel

Method invocation Cache

Worker pools

Web
Cache

Session replication

Distributed 2nd level cache Query Cache

@allardbz

@allardbz

Source: http://www.sabisabi.com/images/DungBeetle-on-dung.JPG

@allardbz

Microservices systems
• Splitting up systems into smaller,

simpler components
• Agility
• Scalability

@allardbz

Are you tall enough?

Source: martinfowler.com/bliki/MicroservicePrerequisites.html

@allardbz

Microservices vs Monoliths

Microservices system
Almost all the cases where I've heard of a system that was built as a
microservice system from scratch, it has ended up in serious trouble.

Monoliths
Almost all the successful microservice stories have started with a
monolith that got too big and was broken up

Martin Fowler

Source: http://martinfowler.com/bliki/MonolithFirst.html

@allardbz

“Noun Driven Design”

Noun? ! Service!

@allardbz

“Noun Driven Design”

OrderService

@allardbz

“Noun Driven Design”

CustomerService

@allardbz

“Noun Driven Design”

ProductService

@allardbz

“Noun Driven Design”

InventoryService

@allardbz

“Entity Services”

➔

@allardbz

Command Query Responsibility Segregation

Command
model

Projections

Client

Events

T: 1 mln / s
Resp: < 10 ms

T: Thr. 20 / s
Resp: < 100 ms

T: 10 mln / s
Resp. < 100 ms

T: 1 / s
Resp. < 10 ms

@allardbz

?

@allardbz

Monoliths

St Breock Downs Monolith - www.cornwalls.co.uk

@allardbz

$

@allardbz

Location transparency

A Component should not be aware, nor make any
assumptions, of the location of Components it

interacts with

A component should neither be aware of nor make any  
assumptions about the location of components it interacts with.

Location transparency starts with good API design  
(but doesn’t end there)

@allardbz

‘Event-Driven’ Microservices

“Event” all the things!

@allardbz

‘Event-Driven’ Microservices

Maslow’s Hammer

@allardbz

‘Event-Driven’ Microservices

Birmingham Screwdriver

@allardbz

‘Event-Driven’ Microservices

“Maslow Syndrome”

@allardbz

‘Event-Driven’ Microservices

Need to know
ordered itemsOrder service

OrderCreated !

ItemAdded !

ItemRemoved !

OrderConfirmed !

@allardbz

Or worse…

Shipping
ServiceOrder service

OrderCreated !

"
InventoryConfirmed

ReadyForShipping !

" OrderShipped

Payment service

OrderPaid !

" ReadyForPayment

@allardbz

Microservices Messaging
Commands Events Queries

Route to single handler
Use consistent hashing

Provide result

Distribute to all logical handlers
Consumers express ordering req’s

No results

Route with load balancing
Sometimes scatter/gather

Provide result

"Event" and “Message" is not the same thing

@allardbz

OrderConfirmed !

‘Event-Driven’ Microservices

Need to know
ordered itemsOrder service

ItemAdded !

ItemRemoved !

OrderConfirmed !

OrderCreated !

" GetOrderDetails

OrderDetails !

@allardbz

Or…

Shipping
ServiceOrder service

ReserveInventory !

" InventoryReserved

ShipOrder !

" OrderShipped

Payment service

OrderPaid !

" PerformPayment

@allardbz

Events retain value
Event Sourcing is an Architectural pattern in which Events are considered the
“source of truth”, based on which components (re)build their internal state.

@allardbz

Event Sourcing

Some smart
analyticsOrder service

OrderCreated !

ItemAdded !

ItemRemoved !

OrderConfirmed !

@allardbz

Event Store
An Event Store stores the published events to be retrieved both
by consumers as well as the publishing component itself.

@allardbz

Event Store operations
• Append
• Validate ‘sequence’

@allardbz

Event Store operations
• Full sequential read

@allardbz

Event Store operations
• Read aggregate’s events

@allardbz

1. Consider explicit messages

2. Define which routing patterns to apply

3. Choose technology/protocol accordingly

@allardbz

@allardbz

Exchange

Queue

Queue

Event Store

@allardbz

Exchange

Queue

Queue

Event Store

Queue

@allardbz

“Just enough” intelligence

dumb smart

Message Broker
Sends messages. Main
value add is reliability.

Enterprise Service Bus
Understands message

content. Hard to configure
and maintain.

Ideal middle ground ?
Understands difference between Commands,

Events, Queries and their routing patterns.
Does not care about the content of these

messages.

@allardbz

Exchange

Queue

Queue

Event Store

Queue

@allardbz

@allardbz

Evolutionary microservices

Commands Events Queries

@allardbz

I can do:
GetOrderDetails
CreateOrder
…
ConfirmOrder

I want to get some
order details

@allardbz

I can do:
CreateOrder
…
ConfirmOrder

I can do:
GetOrderDetailsI want to get some

order details

@allardbz

At scale, different rules apply

@allardbz

How do you route all these
events to all components?  
 
How will this scale?

@allardbz

You Don't!  
 
It Won't!

@allardbz

Unmanageable mess
Order Created
Item Added to Order
Shipping Address Added
Billing Address Added
Order Confirmed

As shipping
module, I want to

know when an
order is placed

@allardbz

Communication = Contract

@allardbz

Bounded context
Explicitly define the context within which a model applies.
Explicitly set boundaries in terms of team organization, usage
within specific parts of the application, and physical
manifestations such as code bases and database schemas. Keep
the model strictly consistent within these bounds, but don’t be
distracted or confused by issues outside.

@allardbz

Within a context, share ‘everything’

@allardbz

Between contexts, share ‘consciously’
As shipping

module, I want to
know when an
order is placed

Order Created
Item Added to Order
Shipping Address Added
Billing Address Added
Order Confirmed

Order Confirmed
+ Get Order Details
! Order Placed

@allardbz

Recap
• Events are useful

• Don’t forget about Commands and Queries
• Events retain value

• Modelling messages explicitly stimulates location
transparency
• Beware coupling
• Consider Bonded Contexts

• “Evolve” your way into microservices

@allardbz

References
• Axon

• axoniq.io
• github.com/axonframework
• github.com/axoniq
• @axonframework
• @axoniq

• QuickStart: axoniq.io/download

