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‘Normal’ SQL QUERY

22 JOINS 6 SUBQUERIES
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Source: http://www.sabisabi.com/images/DungBeetle-on-dung.JPG
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Microservices systems
• Splitting up systems into smaller, 

simpler components
• Agility
• Scalability
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Are you tall enough?

Source: martinfowler.com/bliki/MicroservicePrerequisites.html
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Microservices vs Monoliths

Microservices system 
Almost all the cases where I've heard of a system that was built as a 
microservice system from scratch, it has ended up in serious trouble.

Monoliths 
Almost all the successful microservice stories have started with a 
monolith that got too big and was broken up

Martin Fowler

Source: http://martinfowler.com/bliki/MonolithFirst.html
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“Noun Driven Design”

Noun? ! Service!
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“Noun Driven Design”

OrderService
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“Noun Driven Design”

CustomerService
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“Noun Driven Design”

ProductService
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“Noun Driven Design”

InventoryService
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“Entity Services”

➔
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Command Query Responsibility Segregation

Command 
model

Projections

Client

Events

T: 1 mln / s 
Resp: < 10 ms

T: Thr. 20 / s 
Resp: < 100 ms

T: 10 mln / s 
Resp. < 100 ms

T: 1 / s 
Resp. < 10 ms
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Monoliths

St Breock Downs Monolith - www.cornwalls.co.uk
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Location transparency

A Component should not be aware, nor make any 
assumptions, of the location of Components it 

interacts with

A component should neither be aware of nor make any  
assumptions about the location of components it interacts with. 

Location transparency starts with good API design  
(but doesn’t end there)
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‘Event-Driven’ Microservices

“Event” all the things!
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‘Event-Driven’ Microservices

Maslow’s Hammer
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‘Event-Driven’ Microservices

Birmingham Screwdriver
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‘Event-Driven’ Microservices

“Maslow Syndrome”



@allardbz

‘Event-Driven’ Microservices

Need to know 
ordered itemsOrder service

OrderCreated !

ItemAdded !

ItemRemoved !

OrderConfirmed !
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Or worse…

Shipping 
ServiceOrder service

OrderCreated !

" 
InventoryConfirmed

ReadyForShipping !

" OrderShipped

Payment service

OrderPaid !

" ReadyForPayment
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Microservices Messaging
Commands Events Queries

Route to single handler
Use consistent hashing

Provide result

Distribute to all logical handlers
Consumers express ordering req’s

No results

Route with load balancing
Sometimes scatter/gather

Provide result

"Event" and “Message" is not the same thing
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OrderConfirmed !

‘Event-Driven’ Microservices

Need to know 
ordered itemsOrder service

ItemAdded !

ItemRemoved !

OrderConfirmed !

OrderCreated !

" GetOrderDetails

OrderDetails !
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Or…

Shipping 
ServiceOrder service

ReserveInventory !

" InventoryReserved

ShipOrder !

" OrderShipped

Payment service

OrderPaid !

" PerformPayment
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Events retain value
Event Sourcing is an Architectural pattern in which Events are considered the 
“source of truth”, based on which components (re)build their internal state.
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Event Sourcing

Some smart 
analyticsOrder service

OrderCreated !

ItemAdded !

ItemRemoved !

OrderConfirmed !
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Event Store
An Event Store stores the published events to be retrieved both 
by consumers as well as the publishing component itself.
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Event Store operations
• Append
• Validate ‘sequence’
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Event Store operations
• Full sequential read
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Event Store operations
• Read aggregate’s events
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1. Consider explicit messages

2. Define which routing patterns to apply

3. Choose technology/protocol accordingly
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Exchange

Queue

Queue

Event Store
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Exchange

Queue

Queue

Event Store

Queue
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“Just enough” intelligence

dumb smart

Message Broker 
Sends messages. Main 
value add is reliability. 

Enterprise Service Bus 
Understands message 

content. Hard to configure 
and maintain.

Ideal middle ground ? 
Understands difference between Commands, 

Events, Queries and their routing patterns.  
Does not care about the content of these 

messages.
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Exchange

Queue

Queue

Event Store

Queue
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Evolutionary microservices

Commands Events Queries
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I can do:
GetOrderDetails
CreateOrder
…
ConfirmOrder

I want to get some 
order details



@allardbz

I can do:
CreateOrder
…
ConfirmOrder

I can do:
GetOrderDetailsI want to get some 

order details
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At scale, different rules apply
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How do you route all these 
events to all components?  
 
How will this scale?
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You Don't!  
 
It Won't!
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Unmanageable mess
Order Created 
Item Added to Order 
Shipping Address Added 
Billing Address Added 
Order Confirmed

As shipping 
module, I want to 

know when an 
order is placed
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Communication = Contract
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Bounded context
Explicitly define the context within which a model applies. 
Explicitly set boundaries in terms of team organization, usage 
within specific parts of the application, and physical 
manifestations such as code bases and database schemas. Keep 
the model strictly consistent within these bounds, but don’t be 
distracted or confused by issues outside.
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Within a context, share ‘everything’
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Between contexts, share ‘consciously’
As shipping 

module, I want to 
know when an 
order is placed

Order Created 
Item Added to Order 
Shipping Address Added 
Billing Address Added 
Order Confirmed

Order Confirmed 
+ Get Order Details 
! Order Placed
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Recap
• Events are useful

• Don’t forget about Commands and Queries
• Events retain value

• Modelling messages explicitly stimulates location 
transparency
• Beware coupling
• Consider Bonded Contexts

• “Evolve” your way into microservices
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References
• Axon

• axoniq.io
• github.com/axonframework
• github.com/axoniq
•      @axonframework
•      @axoniq

• QuickStart: axoniq.io/download


