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Microservices
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Characteristics of Microservice Architectures

Do one 

thing wellIndependent

Decentralized

Black box

Polyglot

You build it, you run it
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Microservices should be stateless.

Keep state in external systems.
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No shared libraries or 

shared SDKs.
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Avoid

Host-Affinity.
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Use mechanisms for 

registration.
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Use lightweight 

protocols for 

communication.
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Serverless Foundations
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Serverless means…

• No servers to provision or manage

• Scales with usage

• Never pay for idle

• Built-in High-Availability and Disaster Recovery
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SERVICES (ANYTHING)

Changes in 

data state

Requests to 

endpoints

Changes in 

resource state

EVENT SOURCE FUNCTION

Node.js

Python

Java

C#

Go

Serverless applications
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Lambda considerations and best practices

AWS Lambda is stateless—architect accordingly

• Assume no affinity with underlying compute 

infrastructure

• Local filesystem access and child process may not 

extend beyond the lifetime of the Lambda request
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Lambda considerations and best practices

Can your Lambda functions survive 

the cold?

• Instantiate AWS clients and database 

clients outside the scope of the handler 

to take advantage of container re-use. 

• Schedule with CloudWatch Events for 

warmth

• ENIs for VPC support are attached 

during cold start

import sys 

import logging 

import rds_config

import pymysql

rds_host = "rds-instance" 

db_name = rds_config.db_name

try: 

conn = pymysql.connect( 

except: 

logger.error("ERROR:

def handler(event, context): 

with conn.cursor() as cur:

Executes with 

each invocation

Executes during 

cold start
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Lambda Best Practices

• Minimize package size to necessities

• Separate the Lambda handler from core logic

• Use Environment Variables to modify operational 

behavior

• Self-contain dependencies in your function package

• Leverage “Max Memory Used” to right-size your 

functions

• Delete large unused functions (75GB limit)
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AWS X-Ray Integration with Serverless

• Lambda instruments incoming requests for all 

supported languages

• Lambda runs the X-Ray daemon on all 

languages with an SDK

var AWSXRay = require(‘aws-xray-sdk-core‘);

AWSXRay.middleware.setSamplingRules(‘sampling-rules.json’);

var AWS = AWSXRay.captureAWS(require(‘aws-sdk’));

S3Client = AWS.S3();
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AWS X-Ray Trace Example
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Meet 

SAM!
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AWS Serverless Application Model (SAM)

• CloudFormation extension optimized for 

serverless

• New serverless resource types: functions, 

APIs, and tables

• Supports anything CloudFormation

supports

• Open specification (Apache 2.0)

https://github.com/awslabs/serverless-application-model
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SAM Local

• Develop and test Lambda locally

• Invoke functions with mock 

serverless events

• Local template validation

• Local API Gateway with hot 

reloading

https://github.com/awslabs/aws-sam-local
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Delivery via CodePipeline

Pipeline flow:

1. Commit code to source code repository

2. Package/test in CodeBuild

3. CloudFormation actions in CodePipeline to create or 

update stacks via SAM templates

Optional: Make use of ChangeSets

4. Make use of specific stage/environment parameter 

files to pass in Lambda variables

5. Test our application between stages/environments

Optional: Make use of manual approvals
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AWS CodeDeploy and Lambda Canary Deployments

• Direct a portion of traffic to 

a new version

• Monitor stability with 

CloudWatch

• Initiate rollback if needed

• Incorporate into your SAM 

templates
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Pattern 1: Web App/Microservice/API



© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Web application

Data stored in 

Amazon 

DynamoDB

Dynamic content 

in AWS Lambda
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• ACM

Browser

Amazon Cognito
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Multi-Region with API Gateway
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Useful Frameworks for Serverless Web Apps

• AWS Chalice

Python Serverless Framework

https://github.com/aws/chalice

Familiar decorator-based api similar to Flask/Bottle

Similar to 3rd Party frameworks, Zappa or Claudia.js

• AWS Serverless Express
Run Node.js Express apps 

https://github.com/awslabs/aws-serverless-express

• Java - HttpServlet, Spring, Spark and Jersey
https://github.com/awslabs/aws-serverless-java-container

https://github.com/aws/chalice
https://github.com/awslabs/aws-serverless-express
https://github.com/awslabs/aws-serverless-java-container
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Pattern 2: Data Lake
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Serverless Data Lake Characteristics

• Collect/Store/Process/Consume and Analyze all 

organizational data

• Structured/Semi-Structured/Unstructured data

• AI/ML and BI/Analytical use cases

• Fast automated ingestion

• Schema on Read

• Complementary to EDW

• Decoupled Compute and Storage
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The Foundation…S3

• No need to run compute clusters for storage 

• Virtually unlimited number of objects and volume

• Very high bandwidth  – no aggregate throughput 

limit

• Multiple storage classes

• Versioning

• Encryption
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Search and Data Catalog

• DynamoDB as Metadata 

repository

• Amazon Elasticsearch Service

Catalog & Search

AWS Lambda

AWS Lambda

Metadata Index

(DynamoDB)

Search Index

(Amazon ES)

ObjectCreated

ObjectDeleted PutItem

Update Stream

Update Index

Extract Search Fields

S3 Bucket

https://aws.amazon.com/answers/big-data/data-lake-solution/

https://aws.amazon.com/answers/big-data/data-lake-solution/
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AWS Glue
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AWS Glue
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Analytics and Processing

• Amazon QuickSight

• Amazon Athena

• AWS Lambda

• Predictive Analytics

• Amazon EMR

• AWS Glue (ETL)

Analytics & Processing
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Athena – Serverless Interactive Query Service

44.66 seconds...Data scanned: 169.53GB

Cost: $5/TB or $0.005/GB = $0.85

SELECT gram, year, sum(count) FROM ngram

WHERE gram = 'just say no' 

GROUP BY gram,year ORDER BY year ASC;

Analytics & Processing
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Athena – Best Practices

• Partition data

s3://bucket/flight/parquet/year=1991/month=1/day=2/

• Columnar formats – Apache Parquet, AVRO, ORC

• Optimize file sizes

• Compress files with splittable compression (bzip2)

https://aws.amazon.com/blogs/big-data/top-10-performance-tuning-tips-for-amazon-athena/

Analytics & Processing

https://aws.amazon.com/blogs/big-data/top-10-performance-tuning-tips-for-amazon-athena/
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Serverless batch processing

AWS Lambda: 

Splitter

Amazon S3

Object

Amazon DynamoDB: 

Mapper Results

AWS Lambda: 

Mappers

….

….
AWS Lambda: 

Reducer
Amazon S3

Results

Analytics & Processing
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Pattern 3: Stream Processing
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Stream processing characteristics

• High ingest rate

• Near real-time processing (low latency from ingest to 

process)

• Spiky traffic (lots of devices with intermittent network 

connections)

• Message durability

• Message ordering
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Streaming data ingestion

Amazon CloudWatch:

Delivery metrics

Amazon S3:

Buffered files

Kinesis 

Agent

Record 

Producer

s Amazon Redshift:

Table loads

Amazon ElasticSearch Service:

Domain loads

Amazon S3:

Source record backup

AWS Lambda:

Transformations &

enrichment

Amazon DynamoDB:

Lookup tables

Raw records

Lookup

Transformed records

Transformed recordsRaw records

Amazon Kinesis Data Firehose:

Delivery stream
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Best practices

• Tune Firehose buffer size and buffer interval

• Larger objects = fewer Lambda invocations, fewer S3 PUTs

• Enable compression to reduce storage costs

• Enable Source Record Backup for transformations

• Recover from transformation errors

• Follow Amazon Redshift Best Practices for Loading Data

http://docs.aws.amazon.com/redshift/latest/dg/c_loading-data-best-practices.html
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Real-time analytics

Amazon Kinesis Data Streams:

Ingest stream

Amazon Kinesis Data Streams:

Aggregates stream

Amazon Kinesis Data Firehose:

Error stream

Amazon S3:

Error records

Record 

Producer

s

Amazon DynamoDB:

Device thresholds

AWS SNS:

Notifications

Amazon Kinesis Analytics:

Time window aggregation
AWS Lambda:

Alert function
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Amazon Kinesis Analytics

CREATE OR REPLACE PUMP "STREAM_PUMP" AS INSERT INTO "DESTINATION_SQL_STREAM"

SELECT STREAM "device_id", 

STEP("SOURCE_SQL_STREAM_001".ROWTIME BY INTERVAL '1' MINUTE) as "window_ts",

SUM("measurement") as "sample_sum", 

COUNT(*) AS "sample_count"

FROM "SOURCE_SQL_STREAM_001" 

GROUP BY "device_id", 

STEP("SOURCE_SQL_STREAM_001".ROWTIME BY INTERVAL '1' MINUTE);

Aggregation
1 minute tumbling window

Amazon Kinesis Analytics: 

Time window aggregation

Source stream Destination stream
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Real-time analytics

Amazon Kinesis Data Streams:

Ingest stream

Amazon Kinesis Data Streams:

Aggregates stream

Amazon Kinesis Data Firehose:

Error stream

Amazon S3:

Error records

Record 

Producer

s

Amazon DynamoDB:

Device thresholds

AWS SNS:

Notifications

Amazon Kinesis Analytics:

Time window aggregation
AWS Lambda:

Alert function
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Amazon Kinesis Streams and AWS Lambda

• Number of Amazon Kinesis Streams shards corresponds to concurrent

invocations of Lambda function

• Batch size sets maximum number of records per Lambda function invocation

Amazon Kinesis:

Data Stream

AWS Lambda: 

Processor function

Streaming source Other AWS services



© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Fan-out pattern

Fan-out pattern trades strict message ordering vs higher throughput & lower latency

Amazon Kinesis:

Data Stream

Lambda: 

Dispatcher function
Lambda: 

Processor function

Increase throughput, reduce processing latency

Streaming source
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Best practices

• Tune batch size when Lambda is triggered by Amazon Kinesis 

Streams

• Higher batch size = fewer Lambda invocations

• Tune memory setting for your Lambda function

• Higher memory = shorter execution time

• Use Kinesis Producer Library (KPL) to batch messages and saturate 

Amazon Kinesis Stream capacity
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Go build something!

Amazon API 

Gateway
AWS Lambda Amazon

DynamoDB
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Further Reading

Optimizing Enterprise Economics with Serverless Architectures 

https://d0.awsstatic.com/whitepapers/optimizing-enterprise-economics-serverless-architectures.pdf

Serverless Architectures with AWS Lambda

https://d1.awsstatic.com/whitepapers/serverless-architectures-with-aws-lambda.pdf

Serverless Applications Lens - AWS Well-Architected Framework 

https://d1.awsstatic.com/whitepapers/architecture/AWS-Serverless-Applications-Lens.pdf

Streaming Data Solutions on AWS with Amazon Kinesis

https://d1.awsstatic.com/whitepapers/whitepaper-streaming-data-solutions-on-aws-with-amazon-kinesis.pdf

AWS Serverless Multi-Tier Architectures

https://d1.awsstatic.com/whitepapers/AWS_Serverless_Multi-Tier_Archiectures.pdf

https://d0.awsstatic.com/whitepapers/optimizing-enterprise-economics-serverless-architectures.pdf
https://d1.awsstatic.com/whitepapers/serverless-architectures-with-aws-lambda.pdf
https://d1.awsstatic.com/whitepapers/architecture/AWS-Serverless-Applications-Lens.pdf
https://d1.awsstatic.com/whitepapers/whitepaper-streaming-data-solutions-on-aws-with-amazon-kinesis.pdf
https://d1.awsstatic.com/whitepapers/AWS_Serverless_Multi-Tier_Archiectures.pdf
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Thank you!


