
The Big Friendly Monolith

Frans van Buul

About me
frans.vanbuul@axoniq.io

+31 6 5068 2984

https://www.linkedin.com/in/frans-van-buul-8030743/

mailto:frans.vanbuul@axoniq.io
https://www.linkedin.com/in/frans-van-buul-8030743/

What is AxonIQ?
• AxonIQ was founded in July 2017 as a commercial company with

a focus on the open source Axon Framework.

• AxonIQ delivers:
• Support, training, consultancy for Axon Framework
• Commercial software products that work in conjunction with Axon

Framework.

• Based in Amsterdam, 11 people as of November 2017

Agenda
• Microservices in the context of layered architecture and DDD

• CQRS, event sourcing and Axon Framework concepts

• Axon Framework code examples

Layered Architecture

D
om

ain M
odel

User Interface

Service Layer

Data Access Layer

Evolution of a Domain Model

Evolution of a Domain Model

Example

OrderOrder

Order Line
quantity

Order Line
quantity

Product
price

Product
price

Customer Order

*
1

Example

OrderOrder

Order Line
quantity

Order Line
quantity

Product
price

Product
price

Product
Category
Product

Category

Customer Order
perspective

Product catalogue
perspective

* *
1

Example

OrderOrder

Order Line
quantity

Order Line
quantity

ProductProduct

Product
Category
Product

CategoryCustomer Order
perspective

Product catalogue
perspective

*

*
1

PricePrice
1

* 1 (current)

Evolution of a Domain Model

Big Ball of “Mud”

Source: http://www.sabisabi.com/images/DungBeetle-on-dung.JPG

This won’t help!

D
om

ain M
odel

User Interface

Service Layer

Data Access Layer

Source:
http://geek-and-poke.com/geekandpoke/2013/7/13/foodprints

“We gave up
finding proper
names for the

layers long ago.
Since then we just
name them after
their architects.”

Microservice Architecture

Source: http://martinfowler.com/articles/microservices.html

Microservices vs Monoliths

Microservices system
Almost all the cases where I've heard of a
system that was built as a microservice system
from scratch, it has ended up in serious trouble.

Monoliths
Almost all the successful microservice stories
have started with a monolith that got too big
and was broken up

Martin Fowler

Source: http://martinfowler.com/bliki/MonolithFirst.html

Microservices vs Monoliths

Going from monoliths to microservices
It’s really difficult to break up our legacy
monolith into microservices!

Pretty much everybody these days

Microservice journey
The big, friendly
monolith!

Axon Framework
• “CQRS Framework” for Java

• Open source (Apache 2 License)

• Simplify CQRS based applications
• Building blocks common in CQRS-based architectures

• More information: http://www.axonframework.org

http://www.axonframework.org/

Core Principles
• Message oriented

• Events

• Commands

• Queries

• Location transparency
• Separate infrastructure from business logic

• Customizable
• Configure to match your infrastructure, not vice versa

Command Query Responsibility
Segregation

Command
model

Projections

Client

Events

Commands Queries

Source: https://giphy.com

Why?
• Throughput characteristics

• Mixing technologies (SQL, NoSQL)

• Query complexity

• Event sourcing

• Simplification on the long run

Aggregates

Command model

Revisiting the example

OrderOrder

Order Line
product name

unit price
quantity

total price

Order Line
product name

unit price
quantity

total price

Product
name
price

Product
name
price

Product
Category
Product

Category

Order aggregate Product aggregate

* *

Read models
Projections

Optimized for the specific
read use-cases (e.g.
screens, API methods)

Many separated ones
instead of one big one.

Read models
Projections

CQRS Based Architecture

All together
Product

Aggregate
Order

Aggregate
Product

Projection
Order

Projection

Product
manager

CreateProductCmd
ProductCreatedEvent

Registers product
in read model

Customer

GetProductInfoQuery

AddProductToOrderCmd

ProductAddedToOrderEvent

Traditional method

About persisting aggregates

• Store the current state
directly to database (e.g. by
using JPA).

Traditional method Event Sourcing

About persisting aggregates

• Store the current state
directly to database (e.g. by
using JPA).

• Aggregates only change
state through events.

• Events are distributed and
persisted to an event store.

• To read an aggregate, read
all events belonging to that
aggregate and replay them.

Business reasons Technical reasons

Why use event sourcing?

• Auditing / compliance /
transparency

• Data mining, analytics:
value from data

• Guaranteed completeness of raised
events

• Single source of truth
• Concurrency / conflict resolution
• Facilitates debugging
• Replay into new read models (CQRS)
• Easily capturing intent

Traditional

Example: interesting history

Order:

2 bananas
1 peach

Traditional Event Sourcing

Example: interesting history

Order:

2 bananas
1 peach

Order:
3 apples added
2 bananas added
3 apples removed
1 peach added

Traditional

Example: capturing intent

UPDATE
customer_address

SET
line1 = “10 Random St”

Traditional Event Sourcing

Example: capturing intent

UPDATE
customer_address

SET
line1 = “10 Random St”

WrongAddressCorrectedEvent
(newLine1 = “10 Random St”)

Or

CustomerRelocatedEvent
(newLine1 = “10 Random St”)

CQRS (+ optionally event sourcing):

1 ingredient for the big friendly monolith

Location transparency

A Component should not be aware, nor make any
assumptions, of the location of Components it

interacts with

A component should neither be aware of nor make any
assumptions about the location of components it interacts with.

Location transparency starts with good API design
(but doesn’t end there)

Components Infrastructure

Location transparency in Axon

• All communications
between components take
place through a bus API.

• Components don’t know
where the others are.

• Implementations of those
buses can be switched
without changing the
business logic.

It’s NOT just events!

It’s NOT just events!

A B
Event

Dependency

It’s NOT just events!

A B

Event

Dependency

Event

Dependency

It’s NOT just events!

A B
Command

Dependency

It’s NOT just events!

A B
Command

Dependency

Event

Messaging patterns
Command

- Handled once

- Confirmed

- Consistent routing

Event
- Sent to everyone

- Unconfirmed

- Order consistency

Query
- Gets an answer

- Usually handled
once

- May have
scatter/gather
characteristics

Code examples

Command and Events
data class CreateProductCommand(

val productId: UUID,
val name: String,
val price: BigDecimal)

data class CreateNewOrderCommand(
val orderId: UUID)

data class AddOrderLineCommand(
@TargetAggregateIdentifier val orderId: UUID,
val orderLineId: UUID,
val productId: UUID,
val productName: String,
val quantity: Int,
val unitPrice: BigDecimal)

Sending commands
@Component
public class OrderService {

@Autowired
private final CommandGateway commandGateway;

public UUID createNewOrder() {
UUID id = UUID.randomUUID();
commandGateway.send(new CreateNewOrderCommand(id));
return id;

}

}

Aggregates
@Aggregate
public class Order {

@AggregateIdentifier UUID orderId;

@CommandHandler
void handle(AddOrderLineCommand cmd) {

if(cmd.getQuantity() < 1) throw new IllegalArgumentException("quantity must be >= 1");
apply(new OrderLineAddedEvent(cmd.getOrderId(), cmd.getOrderLineId(), cmd.getProductId(),

cmd.getProductName(), cmd.getQuantity(), cmd.getUnitPrice()));
}

@EventHandler
void handle(OrderLineAddedEvent evt) {
}

}

Aggregates
@Aggregate
public class Order {

@AggregateIdentifier
UUID orderId;
BigDecimal totalOrderValue;

@CommandHandler
void handle(AddOrderLineCommand cmd) {

if(cmd.getQuantity() < 1) throw new IllegalArgumentException("quantity must be >= 1");
if(totalOrderValue.add(cmd.getUnitPrice().multiply(BigDecimal.valueOf(cmd.getQuantity())))

.compareTo(BigDecimal.valueOf(10000L)) > 0) {
throw new IllegalStateException("Total order value must be <= 10000");

}
apply(new OrderLineAddedEvent(cmd.getOrderId(), cmd.getOrderLineId(), cmd.getProductId(),

cmd.getProductName(), cmd.getQuantity(), cmd.getUnitPrice()));

}

@EventHandler
void handle(OrderLineAddedEvent evt) {

totalOrderValue = totalOrderValue.add(
evt.getUnitPrice().multiply(BigDecimal.valueOf(evt.getQuantity())));

}

}

Read models
@Component
public class AllOrdersProjection {

@Autowired
EntityManager entityManager;

@EventHandler
void handle(OrderLineAddedEvent evt) {

/* Find Order JPA entity, add the line so it gets persisted. */
}

public List<OrderRecord> findAllOrders() {
return entityManager.createQuery("select e from OrderRecord e",

OrderRecord.class).getResultList();
}

}

Setting up Axon with default command gateway,
commandbus, eventbus, event sourcing
repositories, and serialization mechanism

This page intentionally left blank.

Making the command bus async
/* The default with Axon Spring Boot */
@Bean
public CommandBus commandBus() {

return new SimpleCommandBus();
}

/* To make this async */
@Bean
public CommandBus commandBus() {

return new AsynchronousCommandBus();
}

Making the command bus
distributed with JGroups

axon.distributed.enabled=true

Put JGroups and Axon distributed command bus on the
classpath.

Set property:

Making the command bus distributed with
Spring Cloud

/* To make this distributed */
@Bean
public CommandRouter springCloudCommandRouter(DiscoveryClient discoveryClient) {

return new SpringCloudCommandRouter(discoveryClient, new AnnotationRoutingStrategy());
}
@Bean
public CommandBusConnector springHttpCommandBusConnector(@Qualifier("localSegment")

CommandBus localSegment, RestOperations restOperations, Serializer serializer)
{

return new SpringHttpCommandBusConnector(localSegment, restOperations, serializer);
}
@Primary // to make sure this CommandBus implementation is used for autowiring
@Bean
public DistributedCommandBus springCloudDistributedCommandBus(CommandRouter commandRouter,

CommandBusConnector commandBusConnector) {
return new DistributedCommandBus(commandRouter, commandBusConnector);

}

To summarize
• CQRS, DDD and location transparency are the key ingredients

to a big friendly monolith that enables evolutionary
microservices.

• CQRS enables event sourcing, which has a important set of
benefits in and by itself.

• Axon Framework enables you to implement this as easily as
possible in Java applications.

