
Serverless  
Distributed  

Ledger

Director of Product, Fauna

Co-founder of Couchbase,  
Architect of Couchbase Mobile

@jchris

t Chris Anderson

Blockchain

Each new block carries a signature of the previous
block. If you know the current block, you can read
the entire history securely. Useful for data
provenance, history tracking, etc.
Combined with proof-of-work makes for an
immutable log.

Blockchain

Each new block carries a signature of the previous
block. If you know the current block, you can read
the entire history securely. Useful for data
provenance, history tracking, etc.
Combined with proof-of-work makes for an
immutable log.

Blockchain

Each new block carries a signature of the previous
block. If you know the current block, you can read
the entire history securely. Useful for data
provenance, history tracking, etc.
Combined with proof-of-work makes for an
immutable log.

Blockchain

Each new block carries a signature of the previous
block. If you know the current block, you can read
the entire history securely. Useful for data
provenance, history tracking, etc.
Combined with proof-of-work makes for an
immutable log.

#noBlockchain

A distributed ledger is a consensus of replicated,
shared, and synchronized digital data geographically
spread across multiple sites, countries, or
institutions.

Ledger

A distributed ledger is a consensus of replicated,
shared, and synchronized digital data geographically
spread across multiple sites, countries, or
institutions.

Ledger

Distributed Ledger

Distributed Ledger

https://animal-exchange.neocities.org/

https://animal-exchange.neocities.org/

https://animal-exchange.neocities.org/

https://animal-exchange.neocities.org/

Getting Serious

Global Consensus

Getting Serious

Global Consensus
Distributed Ledger Transaction

Getting Serious

Global Consensus
Distributed Ledger Transaction
Serverless Security Model

Getting Serious

Global Consensus

Global Consensus

Global Consensus
Each ledger member
runs a high-availability
FaunaDB cluster.

Architecture
Each high-availability
FaunaDB cluster
contains a full copy of the
dataset.

This can be partitioned
for horizontal scaling.

Architecture
Each node runs FaunaDB Enterprise.

Implemented in Scala, delivered as
a .jar packaged for your environment.

The cluster can be dynamically
resized while serving traffic.

Calvin Protocol
FaunaDB uses a distributed write-ahead-log to
provide ACID transactions. In the presence of write
conflicts transactions may be retried internally.

Transactions commit across all datacenters.

Throughput oriented, each Calvin log segment may
contain multiple transactions.

https://fauna.com/blog/distributed-consistency-at-scale-spanner-vs-calvin

https://fauna.com/blog/distributed-consistency-at-scale-spanner-vs-calvin

Calvin Protocol
FaunaDB uses a distributed write-ahead-log to
provide ACID transactions. In the presence of write
conflicts transactions may be retried internally.

Transactions commit across all datacenters.

Throughput oriented, each Calvin log segment may
contain multiple transactions.

https://fauna.com/blog/distributed-consistency-at-scale-spanner-vs-calvin

https://fauna.com/blog/distributed-consistency-at-scale-spanner-vs-calvin

Ledger Transaction
client.query( 
 q.Let({  
 buyer : q.Get(player.ref),  
 item : q.Get(item.ref)  
 }, q.Let({  
 isForSale : q.Select(["data", "for_sale"], q.Var("item")),  
 itemPrice : q.Select(["data", "price"], q.Var("item")),  
 buyerBalance : q.Select(["data", "credits"], q.Var("buyer")),
 seller : q.Get(q.Select(["data", "owner"], q.Var("item")))  
 }, q.If(q.Not(q.Var("isForSale")),  
 "purchase failed: item not for sale",  
 q.If(q.Equals(q.Select("ref", q.Var("buyer")), q.Select("ref", q.Var("seller"))),  
 // buyer = seller, remove item from sale
 q.Do( 
 q.Update(q.Select("ref", q.Var("item")), {  
 data : {  
 for_sale : false  
 }  
 }),  
 "item removed from sale"  
),  
 // check balance  
 q.If(q.LT(q.Var("buyerBalance"), q.Var("itemPrice")),  
 "purchase failed: insufficient funds",  
 // all clear! record the purchase, update the buyer, seller and item.  

 // all clear! record the purchase, update the buyer, seller and item.  
 q.Do( 
 q.Create(q.Class("purchases"), {  
 data : {  
 item : q.Select("ref", q.Var("item")),  
 price : q.Var("itemPrice"),  
 buyer : q.Select("ref", q.Var("buyer")),  
 seller : q.Select("ref", q.Var("seller"))  
 }  
 }),  
 q.Update(q.Select("ref", q.Var("buyer")), {  
 data : {  
 credits : q.Subtract(q.Var("buyerBalance"), q.Var("itemPrice"))  
 }  
 }),  
 q.Update(q.Select("ref", q.Var("seller")), {  
 data : {  
 credits : q.Add(q.Select(["data", "credits"], q.Var("seller")), q.Var("itemPrice"))  
 }  
 }),  
 q.Update(q.Select("ref", q.Var("item")), {  
 data : {  
 owner : q.Select("ref", q.Var("buyer")),  
 for_sale : false  
 }  
 }),
 "purchase success")))))))

https://github.com/fauna/animal-exchange/blob/master/src/model.js

https://github.com/fauna/animal-exchange/blob/master/src/model.js

Ledger Transaction
client.query( 
 q.Let({  
 buyer : q.Get(player.ref),  
 item : q.Get(item.ref)  
 }, q.Let({  
 isForSale : q.Select(["data", "for_sale"], q.Var("item")),  
 itemPrice : q.Select(["data", "price"], q.Var("item")),  
 buyerBalance : q.Select(["data", "credits"], q.Var("buyer")),
 seller : q.Get(q.Select(["data", "owner"], q.Var("item")))  
 }, q.If(q.Not(q.Var("isForSale")),  
 "purchase failed: item not for sale",  
 q.If(q.Equals(q.Select("ref", q.Var("buyer")), q.Select("ref", q.Var("seller"))),  
 // buyer = seller, remove item from sale
 q.Do( 
 q.Update(q.Select("ref", q.Var("item")), {  
 data : {  
 for_sale : false  
 }  
 }),  
 "item removed from sale"  
),  
 // check balance  
 q.If(q.LT(q.Var("buyerBalance"), q.Var("itemPrice")),  
 "purchase failed: insufficient funds",  
 // all clear! record the purchase, update the buyer, seller and item.  

 // all clear! record the purchase, update the buyer, seller and item.  
 q.Do( 
 q.Create(q.Class("purchases"), {  
 data : {  
 item : q.Select("ref", q.Var("item")),  
 price : q.Var("itemPrice"),  
 buyer : q.Select("ref", q.Var("buyer")),  
 seller : q.Select("ref", q.Var("seller"))  
 }  
 }),  
 q.Update(q.Select("ref", q.Var("buyer")), {  
 data : {  
 credits : q.Subtract(q.Var("buyerBalance"), q.Var("itemPrice"))  
 }  
 }),  
 q.Update(q.Select("ref", q.Var("seller")), {  
 data : {  
 credits : q.Add(q.Select(["data", "credits"], q.Var("seller")), q.Var("itemPrice"))  
 }  
 }),  
 q.Update(q.Select("ref", q.Var("item")), {  
 data : {  
 owner : q.Select("ref", q.Var("buyer")),  
 for_sale : false  
 }  
 }),
 "purchase success")))))))

https://github.com/fauna/animal-exchange/blob/master/src/model.js

https://github.com/fauna/animal-exchange/blob/master/src/model.js

Ledger Transaction
client.query( 
 q.Let({  
 buyer : q.Get(player.ref),  
 item : q.Get(item.ref)  
 }, q.Let({  
 isForSale : q.Select(["data", "for_sale"], q.Var("item")),  
 itemPrice : q.Select(["data", "price"], q.Var("item")),  
 buyerBalance : q.Select(["data", "credits"], q.Var("buyer")),
 seller : q.Get(q.Select(["data", "owner"], q.Var("item")))  
 }, q.If(q.Not(q.Var("isForSale")),  
 "purchase failed: item not for sale",  
 q.If(q.Equals(q.Select("ref", q.Var("buyer")), q.Select("ref", q.Var("seller"))),  
 // buyer = seller, remove item from sale
 q.Do( 
 q.Update(q.Select("ref", q.Var("item")), {  
 data : {  
 for_sale : false  
 }  
 }),  
 "item removed from sale"  
),  
 // check balance  
 q.If(q.LT(q.Var("buyerBalance"), q.Var("itemPrice")),  
 "purchase failed: insufficient funds",  
 // all clear! record the purchase, update the buyer, seller and item.  

 // all clear! record the purchase, update the buyer, seller and item.  
 q.Do( 
 q.Create(q.Class("purchases"), {  
 data : {  
 item : q.Select("ref", q.Var("item")),  
 price : q.Var("itemPrice"),  
 buyer : q.Select("ref", q.Var("buyer")),  
 seller : q.Select("ref", q.Var("seller"))  
 }  
 }),  
 q.Update(q.Select("ref", q.Var("buyer")), {  
 data : {  
 credits : q.Subtract(q.Var("buyerBalance"), q.Var("itemPrice"))  
 }  
 }),  
 q.Update(q.Select("ref", q.Var("seller")), {  
 data : {  
 credits : q.Add(q.Select(["data", "credits"], q.Var("seller")), q.Var("itemPrice"))  
 }  
 }),  
 q.Update(q.Select("ref", q.Var("item")), {  
 data : {  
 owner : q.Select("ref", q.Var("buyer")),  
 for_sale : false  
 }  
 }),
 "purchase success")))))))

https://github.com/fauna/animal-exchange/blob/master/src/model.js

Ensure item is for sale

Buyer != seller

Check buyer balance

Write a purchase record

Deduct from buyer balance

Add to seller balance

Update item owner

https://github.com/fauna/animal-exchange/blob/master/src/model.js

Update Buyer Balance
 q.Update(q.Select("ref", q.Var("buyer")), {  
 data : {  
 credits : q.Subtract(q.Var("buyerBalance"), q.Var("itemPrice"))  
 }  
 })

Queries are composed on the client, and sent to the server as an abstract syntax
tree encoded as JSON.

Client Library in Your Language

 update(select('ref', var('buyer')),  
 data: {  
 credits: subtract(var('buyerBalance'), var('itemPrice'))  
 })

https://github.com/fauna/animal-exchange/blob/master/src/model.js

Java Javascript Scala Ruby C# Python Go Swift

https://github.com/fauna/animal-exchange/blob/master/src/model.js

ACID Transactions

Not just for distributed ledgers

Enhance developer productivity

Simplify applications

Address mission-critical use cases at scale

https://github.com/fauna/animal-exchange/blob/master/src/model.js

Serverless Security
Layered access approach.

Lambdas use keys that only have
privileges to run predefined functions.

User defined functions use keys that
cannot modify schema rules or old
temporal snapshots.

AWS Lambda
Function as a Service
JavaScript runs in response to events.
Authenticate users, process resources,
etc.

For distributed ledger, this is the code that
reacts to user events by submitting queries
that call predefined functions.

Code can run on premise.

Predefined Function
FaunaDB user defined functions API where
query fragments can be stored and
executed by other queries.

Only objects with the call permission on a
function can call it, so in the distributed
ledger use case the Lambdas are granted
keys that authenticate into the access-
control graph in a place where they only
have permissions to call the UDF.

{  
 "call": { "function": "create_entry" },  
 "arguments": [
 "First Post Title",
 “This is my first blog post!"]  
}  

Temporal Data
FaunaDB stores data in temporal
snapshots, and has APIs for updating old
snapshots, for instance to fix data-entry
mistakes. Old snapshots are cleaned up
after a configurable TTL.

For distributed ledger, the UDFs run in a
role limited to the current snapshot, so any
snapshot editing can only be done from an
administrative interface.

https://fauna.com/tutorials/timeline
https://fauna.com/blog/time-traveling-databases

https://fauna.com/tutorials/timeline
https://fauna.com/blog/time-traveling-databases

Runs in the cloud(s)
• “Not my server, not my problem, that’s

what I say.” / “Around the world.”
Friendly to JSON / NoSQL

• Schema enforcement is optional, we ❤
rich nested data structures

Relational queries and constraints
• Proper database features are BACK

and they SCALE
Event feeds and temporal features

• So you can build streams and triggers

t FaunaDB: Serverless Database Table Stakes

Object level security
• Model your business rules in the database.

Escape the provisioning trap
• No need to fear traffic spikes, or pay in advance for speculatively high

throughput.
Hierarchal multi-tenancy
• Makes creating new logical datasets cheap and easy. Serverless

processes can scale your business without operator intervention.
Stateless client
• Your Lambdas aren’t paying setup and teardown costs for nothing.

t FaunaDB: The First Serverless Database
What makes Fauna different!

Object level security
• Model your business rules in the database.

Escape the provisioning trap
• No need to fear traffic spikes, or pay in advance for speculatively high

throughput.
Hierarchal multi-tenancy
• Makes creating new logical datasets cheap and easy. Serverless

processes can scale your business without operator intervention.
Stateless client
• Your Lambdas aren’t paying setup and teardown costs for nothing.

t FaunaDB: The First Serverless Database
What makes Fauna different!

 FaunaDB - General Purpose Database

29

Key Features
• Transactions with global consistency
• Rich query support
• Serverless ease-of-use or on-premise
• Hierarchal Multi-tenancy

Use Cases
• Distributed Ledger
• Social Graph Content
• Single Page Applications

© Fauna, Inc. 2016 | Confidential

 A simplified developer experience

• Expression-oriented, flexible, safe

• Simplify multi-part queries into simple questions:
• In the rental car fleet, which make and model

built between 2013 and 2015 has parts from
manufacturers X and Y?

• Increase developer productivity
• Isolate from complexity of different data

models
• Prevent context switches when moving among

query languages and data sets

• Extensible: support data domains such as
geographic indexing, full-text search, iterative
machine learning.

30

© Fauna, Inc. 2016 | Confidential

 Communal resources allotted across teams

• Safe sharing across multiple teams, projects or
companies in a single FaunaDB cluster

• Dynamically tune resource allocation across
tenants

• Align resource utilization with business priorities
• Prioritize customer data over batch

analytics

• Amortize infrastructure costs across multiple
services

31

The more diverse applications, datasets, and workloads are
hosted in a single FaunaDB cluster, the better the price/
performance becomes compared to a traditional, statically
provisioned siloed data architecture.

Copyright, 2016, Fauna, Inc.

 Shared, hierarchical database infrastructure

• Databases within databases

• Shared resources across teams,
projects, applications

• Delegated administration

• Security through isolation

• Can reflect organizational
structure, physical structure, etc.

32

© Fauna, Inc. 2016 | Confidential

 A globally shared resource pool

• Native geo-replication

• Physical cluster spans all data centers

• Logical databases assigned by business
priority

• No impact on operational overhead

• Increases compute elasticity

• Enables:
• Low-latency real-time data
• Geographical data compliance (safe

harbor)

33

