

MINUTES TO SECONDS

How Careem uses volatile storage to power their dispatching algorithms

WHAT TO EXPECT?

- Ingest fast moving data with in-memory storage
- Storing volatile data for efficient lookups
- Real-time decision making with sub millisecond lookups
- Recommended practices for maximum utilization of resources

It comes from the Arabic word Kareem – meaning **generosity**

LET'S BE CAREEM (GENEROUS)

The reason we exist

To simplify and improve the lives of people, and build an awesome organization that inspires

BASICS – GROUND CONDITIONS

- Infrastructure
- High speeds in some cities
- Far away exits
- Social norms

BASICS - CAPTAINS

- Central to our brand
- Where did the name come from?
 - Person in command
 - Leader of a team
- Entrepreneurs

MARKETPLACE

- Match quality
- Tracking

BASICS - CONNECTIVITY

- Low-end Android devices
- Bad GPS sensors
- Extreme temperatures 46°C to 56°C
- Limited bandwidth

METRICS

ETA

Time needed to make the best match (time to match)

Age of captain location [ping]

Ratio of requests matched

REQUIREMENTS

- Ability to provide an upfront ETA (promised ETA)
- Lowest possible delta between promised and actual ETAs
- Ability to look up any captain's location and status for tracking

Ping as fast as possible

TAKE 1

SCALE

19 CITIES

450,000 CUSTOMERS

9,000 CAPTAINS

SCALE

13 M PINGS

16 M LOOKUPS

ISSUES: TAKE 1

MySQL 5.6 - no geo-spatial support

Finding nearby cars was not trivial

For stability, we had to reduce the ping frequency to 60s

Affected our ETAs and customer experience

Cost impact – had to use over provisioned resources

PERFORMANCE

PERFORMANCE

40%

RELIABILITY

95%

UPTIME

LEARNINGS: TAKE 1

- Data is volatile only the most recent version is relevant and the continuous frequency rebuilds the data
- Locks
- Need a mechanism to support µs lookups
- Easy, efficient and super fast nearby-car lookups
- Ability to alter object schema at will
- Need a buffer to deal with traffic spikes
- Need historical time series data against only 2 anchors captains and booking
- Need a mechanism of representing coordinates as a scalar value
- Speed is king

TOOLS

ElastiCache for Redis

Managed In-Memory Nosql Service

SQS

Queue for Captain Apps to Send Pings to

DynamoDB

NoSQL persistence data store for storing historical data against captains and bookings

WHY REDIS?

Single threaded lock free architecture

Rich data structure set

String

Sorted Sets

Data structures provide built-in operations that process data optimally at the database level rather than the application level

Pipelining

Primary – replica configuration – for scaling out reads and fail-over support

TAKE 2

DATA STRUCTURES AT WORK: CAPTAIN INDEXING

Key	Value
captain:234	{"captainId": 234, "lastUpdated":1506349247000}
captain:89	{"captainId": 89, "lastUpdated":1506349202000}
captain:236	{"captainId": 236, "lastUpdated":1506349247000}
captain:78	{"captainId": 78, "lastUpdated":1506349143000}

DATA STRUCTURES AT WORK: GEO INDEXING

Key: geohash:aabbc:product:12

Value	Score
captain:234	1506349247000
captain:89	1506349202000

Key: geohash:aabbd:product:12

Value	Score
captain:236	1506349247000
captain:77	1506349143000

DATA STRUCTURES AT WORK: GEO INDEXING

Key: geohash:aabbc:product:12

Value	Score
captain:234	1506349247000
captain:78	1506349143000

Key: geohash:aabbd:product:12

Value	Score
captain:89	1506349414000
captain:236	1506349247000
captain:77	1506349143000

GEO LOOKUPS - NEARBY CAPTAINS

SCALE

47 CITIES

6M CUSTOMERS

250,000 CAPTAINS

	PREVIOUS VALUES	
19	450,000	9,000

SCALE

4.1 META Requests

80 M PINGS

26 MLOOKUPS

PREVIOUS VALUES		
945,000	13 M	16 M

PERFORMANCE

PERFORMANCE

86%RELIABILITY

99.99%UPTIME

PERFORMANCE - LOOKUPS

SUMMARY

We were able to increase the frequency of pings to 4 per minute (every 15s)

Improved our ETAs and customer experience as more pings meant that we were dispatching very close to captain's locations

Side benefit: granular level captain tracking for customers (in ride)

Average time to match reduced from 2 minutes to 15 seconds

UNDER THE HOOD

OUR TECH STACK

REDIS – DIFFERENT MODES

Standalone

Primary / replica

Clustered

HYGIENE

Always have multiple slaves in your cluster

Configure back ups with a replica

For writes never connect directly to the writable node directly, use the

primary endpoint

Set aside 30% memory

SCALING

- Read scale out
- Choose the right client library

FURTHER SCALING

FASTER PINGS BY GREATER NUMBER OF CAPTAINS

- Even more captains on the network
- Even more customers reading assigned captain's data
- Same performance demand
 - More balanced read and writes

SCALE

80 CITIES

15 MCUSTOMERS

450,000 CAPTAINS

PREVIOUS VALUES		
48	6 M	250,000

SCALE

ETA Requests

140 M PINGS

48 M LOOKUPS

PREVIOUS VALUES		
4.1 M	80 M	26 M

SHARDING

- Cluster mode with Redis 3.0
- Multiple primaries with each having its own set of replicas
- Hash slots
- CRC
- Application agnostic

TAKE 3

PERFORMANCE

