
Improving Business Decision
Making with Bayesian Artificial
Intelligence
Dr. Michael Green

2017-11-03

Agenda

Overview of AI and Machine learning

Why do we need more?

Our Bayesian Brains

Probabilistic programming

Tying it all together

·

·

·

·

·

2/48

Overview of AI and Machine
learning

AI is the behaviour
shown by an agent in
an environment that
seems to optimize the
concept of future
freedom

“

4/48

What is Artificial Intelligence?

Artificial Narrow Intelligence

Artificial General Intelligence

Artificial Super Intelligence

Classifying disease

Self driving cars

Playing Go

·

·

·

Using the knowledge of driving a car and applying it to another domain
specific task

In general transcending domains

·

·

Scaling intelligence and moving beyond human capabilities in all fields

Far away?

·

·

5/48

The AI algorithmic landscape

6/48

Why do we need more?

Machine learning can only take us so far
Why is that?

Data: Data is not available in cardinality needed for many real world
interesting applications

Structure: Problem structure is hard to detect without domain knowledge

Identifiability: For any given data set there are many possible models that fit
really well to it with fundamentally different interpretations

Priors: The ability to add prior knowledge about a problem is crucial as it is
the only way to do science

Uncertainty: Machine learning application based on maximum likelihood
cannot express uncertainty about it's model

·

·

·

·

·

8/48

The Bayesian brain

Domain space

Machine learning

Inference

p (x, y, θ)

p (y|θ, x)

p (θ|y, x) =
p (y|θ, x) p (θ|x)
∫ p (y, θ|x) dθ

9/48

You cannot do science
without assumption!

“

10/48

A Neural Networks example

Spiral data

Overview

This spiral data feature two classes and the task is to correctly classify future
data points

Features of this data

Highly nonlinear

Noisy

Apparent structure

·

·

·

12/48

Running a Neural Network

13/48

Running a Neural Network

Accuracy

Hidden nodes Accuracy AUC

10 65% 74%

30 71% 82%

100 99% 100%

Only at 100 latent variables in the hidden layer do we reach the accuracy we
want

14/48

Decision boundaries

15/48

Network architectures

10 Hidden nodes

30 Hidden nodes

16/48

Proper modeling of the problem

Cartesian coordinates

Polar coordinates

17/48

A probabilistic programming take

Probabilistic
programming is an
attempt to unify
general purpose
programming with
probabilistic
modeling

“

19/48

Learning the data

x
y

μx

μy

δ

∼
∼

=

=

∼

 (,)μx σx

 (,)μy σy

(r + δ) cos()t
2π

(r + δ) sin()t
2π

 (0.5, 0.1)

Instead of throwing a lot of nonlinear generic functions at this beast we could
do something different

From just looking at the data we can see that the generating functions must
look like

Which fortunatly can be programmed using a probabilistic programming
language

·

·

·

20/48

What we gain from this

We get to put our knowledge into the model solving for mathematical
structure

A generative model can be realized

Direct measures of uncertainty comes out of the model

No crazy statistical only results due to identifiability problems

·

·

·

·

21/48

Summary Statistics is Dangerous

Enter the Datasaurus

All datasets, and all frames of the animations, have the same summary statistics (, ,
, ,).

= 54.26μx = 47.83μy

= 16.76σx = 26.93σy = −0.06ρx,y

23/48

Visualization matters!

Seven distributions of data, shown as raw data points (or strip-plots), as box-
plots, and as violin-plots.

24/48

Deep Learning

Deep learning is just a stacked neural network

26/48

Degeneracy in Neural Networks

A neural network is looking for the deepest valleys in this landscape

As you can see there are many available

Are they equivalent?

Parameter space may have multiple "optimal" configurations not
corresponding to physical reality

As a consequence most Neural network models are overparameterized

·

·

·

·

·

27/48

Degeneracy is in the structure

28/48

Energy landscape in the , parametersω11 ω12

29/48

So what's my point?

The point is that these spurious patterns will be realized in most if not all neural networks and their
representation of the reality they're trying to predict will be inherently wrong. Read the paper by Nguyen
A, Yosinski J, Clune J

30/48

An example regarding time

Events are not temporally independent

32/48

A real world example from Blackwood

Every node in the network represents a latent or observed variable and the
edges between them represents interactions

·

33/48

Our Bayesian brains

About cognitive strength

Our brain is so successful because it has a strong anticipation about what will
come

Look at the tiles to the left and judge the color of the A and B tile

To a human this task is easy because we know what to expect and we quickly
realize that A and B have different hues

·

·

·

35/48

The problem is only that you are wrong

36/48

Probabilistic programming

What is it?

Probabilistic programming creates systems that help make decisions in the face
of uncertainty. Probabilistic reasoning combines knowledge of a situation with
the laws of probability. Until recently, probabilistic reasoning systems have been
limited in scope, and have not successfully addressed real world situations.

It allows us to specify the models as we see fit

Curse of dimensionality is gone

We get uncertainty measures for all parameters

We can stay true to the scientific principle

We do not need to be experts in MCMC to use it!

·

·

·

·

·

38/48

Enter Stan a probabilistic programming language

Users specify log density functions in Stan’s probabilistic programming language
and get:

Stan’s math library provides differentiable probability functions & linear algebra
(C++ autodiff). Additional R packages provide expression-based linear modeling,
posterior visualization, and leave-one-out cross-validation.

full Bayesian statistical inference with MCMC sampling (NUTS, HMC)

approximate Bayesian inference with variational inference (ADVI)

penalized maximum likelihood estimation with optimization (L-BFGS)

·

·

·

39/48

A note about uncertainty

Task

Further information

Solution

Suppose I gave you a task of investing 1 million USD in either Radio or TV advertising

The average ROI for Radio and TV is

How would you invest?

·

· 0.5

·

Now I will tell you that the ROI's are actually distributions

Radio and TV both have a minimum value of 0

Radio and TV have a maximum of 9.3 and 1.4 respectively

Where do you invest?

·

·

·

·

How to think about this?

You need to ask the following question

What is ?

The answer to that question is around 40 and 90 percent for Radio and TV respectively!

·

·

· p(ROI > 0.3)

·

40/48

A note about uncertainty - Continued

Radio TV

Mean 0.5 0.5

Min 0.0 -0.3

Max 9.3 1.4

Median 0.2 0.5

Mass 0.4 0.9

Sharpe 0.7 2.5

41/48

You cannot make
optimal decisions
without quantifying
what you don't know

“

42/48

Tying it all together

Deploying a Bayesian model using R

Features

There's a Docker image freely available with an up to date R version installed
and the most common packages

https://hub.docker.com/r/drmike/r-bayesian/

·

·

R: Well you know

RStan: Run the Bayesian model

OpenCPU: Immediately turn your R packages into REST API's

·

·

·

44/48

https://hub.docker.com/r/drmike/r-bayesian/

How to use it

Fist you need to get it

You can also test the imbedded stupid application

sudo docker pull drmike/r-bayesian

sudo docker run -it drmike/r-bayesian bash

·

·

docker run -d -p 80:80 -p 443:443 -p 8004:8004 drmike/r-bayesian

curl http://localhost:8004/ocpu/library/stupidweather/R/predictweather/json -
H "Content-Type: application/json" -d '{"n":6}'

·

·

45/48

http://localhost:8004/ocpu/library/stupidweather/R/predictweather/json

Conclusion

Take home messages

The time is ripe for marrying machine learning and inference machines

Don't get stuck in patterns using existing model structures

Stay true to the scientific principle

Always state your mind!

Be free, be creative and most of all have fun!

·

·

·

·

·

47/48

Session Information
For those who care

setting value
version R version 3.4.2 (2017-09-28)
system x86_64, linux-gnu
ui X11
language en_US:en
collate en_US.UTF-8
tz Europe/Copenhagen
date 2017-11-03

package * version date source
assertthat 0.2.0 2017-04-11 CRAN (R 3.3.3)
backports 1.1.1 2017-09-25 CRAN (R 3.4.2)
base * 3.4.2 2017-10-28 local
bindr 0.1 2016-11-13 cran (@0.1)
bindrcpp * 0.2 2017-06-17 cran (@0.2)
bitops 1.0-6 2013-08-17 CRAN (R 3.3.0)
caTools 1.17.1 2014-09-10 CRAN (R 3.4.0)
colorspace 1.3-2 2016-12-14 CRAN (R 3.4.0)
compiler 3.4.2 2017-10-28 local
datasets * 3.4.2 2017-10-28 local
devtools 1.13.3 2017-08-02 CRAN (R 3.4.1)
digest 0.6.12 2017-01-27 CRAN (R 3.4.0)
dplyr * 0.7.4 2017-09-28 cran (@0.7.4)
evaluate 0.10.1 2017-06-24 cran (@0.10.1)
gdata 2.18.0 2017-06-06 cran (@2.18.0)
ggplot2 * 2.2.1 2016-12-30 CRAN (R 3.3.2)
glue 1.1.1 2017-06-21 cran (@1.1.1)
gplots * 3.0.1 2016-03-30 CRAN (R 3.4.0)
graphics * 3.4.2 2017-10-28 local
grDevices * 3.4.2 2017-10-28 local
grid 3.4.2 2017-10-28 local
gtable 0.2.0 2016-02-26 CRAN (R 3.3.0)
gtools 3.5.0 2015-05-29 CRAN (R 3.4.0)
highr 0.6 2016-05-09 CRAN (R 3.3.0)
htmltools 0.3.6 2017-04-28 CRAN (R 3.4.0)
KernSmooth 2.23-15 2015-06-29 CRAN (R 3.4.0)
knitr 1.17 2017-08-10 cran (@1.17)
labeling 0.3 2014-08-23 CRAN (R 3.3.0)
lazyeval 0.2.0 2016-06-12 CRAN (R 3.4.0)
magrittr 1.5 2014-11-22 CRAN (R 3.3.0)
MASS * 7.3-47 2017-04-21 CRAN (R 3.4.0)
memoise 1.1.0 2017-04-21 CRAN (R 3.4.0)
methods * 3.4.2 2017-10-28 local
munsell 0.4.3 2016-02-13 CRAN (R 3.3.0)
nnet * 7.3-12 2016-02-02 CRAN (R 3.4.0)
pkgconfig 2.0.1 2017-03-21 cran (@2.0.1)
plyr 1.8.4 2016-06-08 CRAN (R 3.4.0)
purrr 0.2.2.2 2017-05-11 cran (@0.2.2.2)
R6 2.2.2 2017-06-17 cran (@2.2.2)
RColorBrewer 1.1-2 2014-12-07 CRAN (R 3.3.0)
Rcpp 0.12.13 2017-09-28 cran (@0.12.13)
reshape * 0.8.7 2017-08-06 CRAN (R 3.4.1)
reshape2 1.4.2 2016-10-22 CRAN (R 3.4.0)
rlang 0.1.2.9000 2017-10-23 Github (hadley/rlang@cbdc3f3)
rmarkdown 1.6 2017-06-15 CRAN (R 3.4.2)
ROCR * 1.0-7 2015-03-26 CRAN (R 3.4.0)
rprojroot 1.2 2017-01-16 CRAN (R 3.3.2)
scales * 0.5.0 2017-08-24 CRAN (R 3.4.1)
stats * 3.4.2 2017-10-28 local
stringi 1.1.5 2017-04-07 CRAN (R 3.4.0)
stringr 1.2.0 2017-02-18 CRAN (R 3.3.2)
tibble * 1.3.4 2017-08-22 cran (@1.3.4)
tidyr * 0.7.2 2017-10-16 CRAN (R 3.4.2)
tools 3.4.2 2017-10-28 local
utils * 3.4.2 2017-10-28 local
withr 2.0.0 2017-07-28 CRAN (R 3.4.1)

48/48

