

gotober.com

WebAssembly what? why? whither?

Ben L. Titzer Andreas Rossberg Google Germany

What is WebAssembly?

- A portable, compact, binary code format
 - \circ \quad Low-level execution model with native unboxed types
 - \circ Suitable as a compilation target, e.g. for C++
- Natively supported in all major browsers
- Developed in the W3C WebAssembly Community Group
- Offers near-native performance for low-level code
- Integrates with the Web platform through JavaScript APIs

Users and potential users

- WebAssembly has grown fast since first browsers shipped in March 2017, with many prototypes and a lot of interest
 - Google Earth
 - Unity3d
 - Epic
 - AutoCAD
 - Figma
 - Farmville 2
 - Active Financial
 - Soundation
 - AmpedStudio
 - Twitch.tv

WebAssembly Basics - Modules

- WebAssembly code is organized into units called *modules*
- A module has a number of *functions*
 - Imports: for accessing explicitly granted host functionality
 - Locally defined functions: local computation
 - Exported functions: allows calls into the module
- A module has no *state*, but declares:
 - Size of memory
 - Global variables
 - Tables for indirect calls and host interaction
- A module is *instantiated* to create a stateful computation
 - An instance has a memory, variables, local execution stack, etc

WebAssembly Modules and Instances

Module

Instance

Binary Format Overview

- Design:
 - A series of *sections* in a pre-defined order
 - Use of variable-length integers for future-proofing
 - Function body code is stack machine *bytecode*

Binary Format

Function signatures Imports **Function declarations** Indirect table Memory configuration Global declarations Exports Start function index Table initialization section Function bodies (code) Memory initialization data code=0x01 code=0x02 code=0x03 code=0x04code=0x05 code=0x06 code=0x07 code=0x08 code=0x09 code=0x0a code=0x0b

(Simplified) Instruction Set

Instruction Example

Official text format

(func (export "add")
(param <mark>\$x</mark> i32)
(param <mark>\$y</mark> i32)
(result i32)
(i32.add
(get_local <mark>\$x</mark>)
(get_local \$y)))
<u></u>

Binary

+15: 60 02 7f 7f 01 7f	
+27: 01 00	<u></u>
 +48: 01 87 80 80 80 00	<u> </u>
+54: 00 20 00 20 01 6a 0b	

<u>Types section</u>

(int, int) -> int

Function declaration

1 function of type #0

-unction body

1 body of length 7
0 additional locals
get_local #0
get_local #1
i32.add
end

Embedding WebAssembly

- WebAssembly is not a complete platform, but is more like a virtual instruction set architecture, like X86
- Requires an *embedding* environment to provide:
 - \circ Module loading and instantiation
 - Linking between modules (via imports and exports)
 - \circ \quad Host imported functions for interacting with the platform
- Most important embedding is within JavaScript, within the web
 - $\circ \quad \mbox{ APIs for loading and instantiating modules }$
 - Provides access to JavaScript APIs
 - Callable from JavaScript
 - Offers no new "API surface" for the web

Embedding WebAssembly

• WebAssembly instances can only interact with APIs that are provided by an embedder

Explicitly imported JavaScript functions

JavaScript API to load, validate, and instantiate modules

Exported functions are called as normal JavaScript functions

Explicitly imported JavaScript functions

JavaScript API to load, validate, and instantiate modules

Exported functions are called as normal JavaScript functions

The memory can optionally be exported to JS as an array buffer

JavaScript API

- New WebAssembly object available in JavaScript outermost scope
 - WebAssembly.Module opaque representation of decoded binary bytes
 - WebAssembly.Instance instantiated module with state
 - WebAssembly.Memory handle to low-level memory
 - WebAssembly.Table used for indirect calls
- Synchronous and asynchronous API for compiling modules
 - A simple as new WebAssembly.Module(bytes) and new WebAssembly.Instance(module, imports)

Why WebAssembly?

High performance

Predictable performance

Empower other languages than JavaScript

Enable features that JavaScript can't provide

Supersede asm.js and (P)NaCl

Goals & Constraints

Semantics

Language-independent

Platform-independent

Hardware-independent

Fast to execute

Safe to execute

Deterministic

Easy to reason about

Compact Representatior Easy to generate Fast to decode Fast to validate Fast to compile **Streamable** Parallelizable

Performance

[PLDI 2017]

Code Size

[PLDI 2017]

Implementation

WebAssembly is implemented within JavaScript engine Reuses sophisticated optimising JIT Fast calls from Wasm to JS and vice versa No need to reinvent garbage collection, code management, etc

Different implementation strategies

Multiple tiers

AOT compilation, JIT compilation, or interpretation as first tier

Additional optimisations

Code specialisation, hardware traps, etc

Producing WebAssembly

Compiling from different languages C and C++ (via Emscripten) Rust AssemblyScript ... hopefully many more to come soon

Generating Wasm binaries at runtime Can implement source language JITs on top of Wasm

Designed to be language-independent!

Consuming WebAssembly

In the browser As part of the web platform

Embedded into JavaScript

Other embeddings and standalone implementations Many potential use cases independent of the web or JavaScript Some already being build Stay tuned.

Designed to be platform/embedding-independent!

The Specification

Contract between producers and consumers

Setting a new bar for industrial languages!

Includes a complete formal semantics Declarative specification of binary format, validation, execution Using state-of-the-art techniques from research Led to simpler and cleaner design

Mechanised and machine-verified in theorem prover Proof of type soundness Absence of undefined behaviour, sandbox safety

(store) a		= {in	st inst [*] , tab tabinst [*] , mem men	minst"}	
(instances) i	nst :::	= {fu	nc cl^* , glob v^* , tab i^2 , mem i^2 }		
(abinst ::=	= cl ²			
,	neminst ::=	$= b^{*}$			
(closures) a	d ::=	= {in	st i, code f } (where f is i	not an import and has a	ll exports ex* erased)
(values) a	/ ::=	= t.c	onst c		
(administrative operators) e			$ trap call cl label{t^:e^} e^ e$	and $ \log a \{i; v^*\} e^* en$	d
(local contexts)	2 ⁰	= v*	[-] e [*]		
((k+1 🔒	= v*	$abel{t^*;e^*} L^*$ end e^*		
Reduction $s: v^*: e^* \hookrightarrow_{i} s$	':v'*:e'*		$s; v^*; e^* \hookrightarrow_i s'; v'^*$:e'	$s: v^*: e^* \hookrightarrow s: v^*: e^*$
$s^* v^* \cdot L^k[e^*] \leftrightarrow s$	$(-\pi)^* \cdot L^{k}[e^{j+1}]$		$ui: local{i: u^*} e^* end \hookrightarrow e^* ui$	· local(i: n'*) e'* end	
-, - <u>1</u>	1- 1- 1- 1	,	-0112221(112-112-112-112-112)	,	
(t.con	st c) t.unop	\hookrightarrow	$t.const unop_t(c)$		
$(t.const c_1)$ $(t.const$	$t c_2$ (t.binop)	\hookrightarrow	t.const c		if $c = binop_t(c_1, c_2)$
$(t.const c_1)$ $(t.const$	$t c_2$ (t.binop	\hookrightarrow	trap		otherwise
(f.cons	t c) t.testop	\hookrightarrow	i32.const testop ₁ (c)		
(t.const c1) (t.const	a c2) t.retop	\hookrightarrow	$132.const relop_t(c_1, c_2)$		
$(t_1.const c) t_2.co$	nvert t_{1-sx}	\hookrightarrow	t2.const c		if $c' = cvt_{t_1,t_2}^{ss}(c)$
$(t_1.const c) t_2.co$	nvert t_{1-sx}	\hookrightarrow	trap		otherwise
$(t_1.const c) t_2.re$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$				
	unreachable	\hookrightarrow	trap		
	nop	\hookrightarrow	e.		
(199	v drop	\hookrightarrow	e		
v ₁ v ₂ (132.co	nst 0) select	\hookrightarrow	02		
v1 v2 (152.const a	(+ 1) select	\rightarrow	21		
v^{*} block $(t_{1}^{*} -$	t_2) e^{-} end	\hookrightarrow	label $\{t_2^+, \epsilon\} v^+ e^-$ end	1	
0 loop (t)	else af end	\rightarrow	label $(t_1; loop (t_1 \rightarrow t_2)) e$ end	l}v`∈ end	
$(i32 \text{ const } k \pm 1)$ if $(l \neq l)$	else el end	2	block if e2 end		
(152.consex + 1) ii ij e;	enee 2 en a		block ly e1 end		
labelit	e je end	\rightarrow	8		
$aber (i + i) = babel (i^n \cdot e^+) \int defined$	' (by i)] end	2	trap		
(i32 cone	E() (br if i)	4			
(i32.const k -	- 1) (br_if i)	÷	br i		
(i32.const k) (br.t	able it i it)	\hookrightarrow	bri		
(i32.const k + n) (b	r_table i i)	\hookrightarrow	br i		
(n call i		coller (i i)		
e: (i32.const.i) cal	Lindirect If		call $s_{ini}(i, j)$	if and (i i)	$u = (\text{func } tf \text{ local } t^* e^*)$
s: (i32.const i) cal	Lindirect if	\rightarrow	trap	a atso(4, 5)(a	otherwise
	v^n (call d)	\hookrightarrow	$local{cline}; v^n (t.const 0)^k$ blo	ick $(\epsilon \rightarrow t_2^m) \epsilon^*$ end er	nd
local {	vi v end	\hookrightarrow	v"	if close = (fur	$ic (t_1^n \rightarrow t_2^m) local t^h e^*)$
local{i;	i frap end	\hookrightarrow	trap	,,	,
$local\{i; v_i^*\} L^{k+1}$	[return] end	\hookrightarrow	$local{i; v_i^*} L^{k+1}[br k] end$		
nt 11 15	get_local i	\hookrightarrow	21		
n n n - n /	(set_local_i)		nt of me		
v (tee local j)	$\stackrel{\cdot}{\hookrightarrow}$	v v (set_local j)		
8;	get_global j	\hookrightarrow_i	$s_{glob}(i, j)$		
s; v (s	et_global j)	\hookrightarrow_i	s'; e	if .	s' = s with $glob(i, j) = v$
s; (i32.const k)	(t.load a o)	\hookrightarrow_i	$t.const const_t(b^*)$		if $s_{mem}(i, k + o, t) = b^*$
s; (i32.const k) (t .loa	id tp-sx a o)	\hookrightarrow_i	$t.const const_{t}^{sc}(b^{*})$	i	$f_{\text{Amer}}(i, k + o, tp) = b^*$
s; (i32.const k) (t .load	f tp.sr a o)	\hookrightarrow_i	trap		otherwise
s; (i32.const k) (t.const c)	(t.store a o)	\hookrightarrow_i	s'; e	if $s' = s$ with mem	$(i, k + o, t) = \operatorname{bits}_t^{ t }(c)$
s; (i32.const k) (t .const c) (t .	store (p a o)	\hookrightarrow_i	s'; e	if $s' = s$ with mem $(i$.	$(k + a, tp) = bits_t^{ tp }(c)$
s; (i32.const k) (t.const c) (t.s	tore $tp^2 = o$)	\hookrightarrow_i	trap		otherwise
s; curre	nt_memory]	\hookrightarrow_i	i32.const see (i, *) /64 Ki		
s; (i32.const k) gr	ow_memory	\hookrightarrow_i	s'; i32.const s _{marc} (i, *) /64 Ki	if $s' = s$ with mem (i, j)	$*$] = $s_{mem}(i, *) (0)^{n-64 \text{ Ki}}$
s: (i32.const k) gr	$s_i(i32.const k)$ grow memory $\mapsto_i i32.const (-1)$				

[PLDI 2017]

Figure 1. Small-step reduction rules

yping instructions	$C \vdash e^*$:
$\overline{C \vdash t. const \ c: \epsilon \to t} \qquad \overline{C \vdash t. unop: t \to t} \qquad \overline{C \vdash t. binop: t t \to t} \qquad \overline{C \vdash t. testop: t \to i32} \qquad \overline{C}$	$\vdash t.relop : t t \rightarrow i32$
$t_1 \neq t_2 \qquad sx^2 = \epsilon \Leftrightarrow (t_1 = in \land t_2 = in' \land t_1 < t_2) \lor (t_1 = fn \land t_2 = fn') \qquad t_1 \neq t_2$	$ t_1 = t_2 $
$C \vdash t_1$.convert t_2 .s $x^2 : t_2 \rightarrow t_1$ $C \vdash t_1$.reinterp	ret $t_2: t_2 \rightarrow t_1$
$\overline{C}\vdash unreachable: t_1^* \to t_2^* \qquad \overline{C}\vdash nop: \epsilon \to \epsilon \qquad \overline{C}\vdash drop: t \to \epsilon \qquad \overline{C}\vdash select: t \ t_1^* \to t_2^* \qquad \overline{C}\vdash select: t \ t_2^* \to t_2^* = t_2^* \to t_2^* = t_2^* \to t_2^* \to$	$32 \rightarrow t$
$tf = t_1^n \rightarrow t_2^m \qquad C, label\left(t_2^m\right) \vdash e^*: tf \qquad tf = t_1^n \rightarrow t_2^m \qquad C, label\left(t_1^n\right) \vdash e^*: tf$	
$C \vdash block \ tf \ e^* \ end : tf$ $C \vdash block \ tf \ e^* \ end : tf$	
$\underline{tf} = t_1^n \rightarrow t_2^m \qquad C, label\left(t_2^m\right) \vdash e_1^*: tf \qquad C, label\left(t_2^m\right) \vdash e_2^*: tf$	
$C \vdash if \ tf \ e_1^* else \ e_2^* end : t_1^n \ i32 \to t_2^m$	
$C_{\text{label}}(i) = t^*$ $C_{\text{label}}(i) = t^*$ $(C_{\text{label}}(i) = t^*)^+$	_
$C \vdash br \ i: t_1^* \ t^* \to t_2^* \qquad C \vdash br \ iif \ i: t^* \ ii 2 \to t^* \qquad C \vdash br \ table \ i^+: t_1^* \ t^* \ ii 2 \to t_2^*$	2
$C_{\text{tabel}}(C_{\text{tabel}} - 1) = t^*$ $C_{\text{tabel}}(i) = tf$ $tf = t_1^* \rightarrow t_2^*$ $C_{\text{table}} = n$	
$C \vdash return: t_1^* t^* \to t_2^* \qquad C \vdash call \ i: t_1^* \qquad C \vdash call_indirect \ t_1^* \ i32 \to t_2^*$	
$C_{i-1}(i) = t$ $C_{i-1}(i) = t$ $C_{i-1}(i) = t$ $C_{i-1}(i) = mm^2 t$	$C \dots \langle i \rangle = mut I$
$\frac{C \vdash get.local(i) = i}{C \vdash get.local(i) = i} \frac{C \vdash get.local(i) = i}{C \vdash set.local(i) = i} \frac{C \vdash get.global(i) = ind(i)}{C \vdash get.global(i) = i} \frac{C \vdash get.global(i) = ind(i)}{C \vdash get.global(i) = i} \frac{C \vdash get.global(i) = ind(i)}{C \vdash get.global(i) = i} \frac{C \vdash get.global(i) = i}{C \vdash get.global(i) = i} C \vdash \mathsf{$	\vdash set_global $i : t \rightarrow$
$\frac{C_{memory} = n - 2^{\circ} \le (tp <)^{?} t - (tp-sz)^{?} = \epsilon \lor t = im}{C \vdash t \operatorname{cload}(tp-sz)^{?} = \epsilon \lor t = im} - \frac{C_{memory} = n - 2^{\circ} \le (tp <)^{?} t }{C \vdash t \operatorname{cload}(tp-sz)^{?} = \epsilon \lor t = im}$	$tp^7 = \epsilon \lor t = im$ $\rightarrow \epsilon$
$C_{maxwell} \equiv n$ $C_{maxwell} \equiv n$	
$C \vdash$ current memory : $\epsilon \rightarrow i32$ $C \vdash$ grow memory : $i32 \rightarrow i32$	
$C \vdash e_1^i : t_1^i \rightarrow t_2^i$ $C \vdash e_2 : t_2^i \rightarrow t_2^i$ $C \vdash e_1^i : t_2^i \rightarrow t_2^i$	
$\overline{C \vdash \epsilon : \epsilon \to \epsilon} \qquad \overline{C \vdash e^* : e_2 : t^*_i \to t^*_i} \qquad \overline{C \vdash e^* : t^* : t^*_i \to t^* : t^*_i}$	
Sector Madala	
yping modules $(l - l^2 \rightarrow l^2 - C \log(l^2 l^2 \log(l^2)) + s^2 + s \rightarrow l^2 - ls - mut^2 t - C + s^2 + s \rightarrow t$	$er^* = e \vee ie = i$
$\frac{q - q}{C + ex^* \text{ func } t! \text{ local } t^* e^* : ex^* t!} \qquad \frac{q - u - v}{C + e^* \text{ slobal } t e^* :}$	$ex^* ta$
$(C_{tarr}(i) = tf)^n$	
$\overline{C \vdash ex^*}$ table $n i^n : ex^* n$ $\overline{C \vdash ex^*}$ memory $n : ex^* n$	
$\frac{lg = l}{C \vdash ex^* \text{ func } tf \text{ im } : ex^* tf} = \frac{lg = l}{C \vdash ex^* \text{ global } lg \text{ im } : ex^* lg} = \frac{C \vdash ex^* \text{ table } n \text{ im } : ex^* n}{C \vdash ex^* \text{ table } n \text{ im } : ex^* n} = \frac{C \vdash ex^* tg}{C \vdash ex^* \text{ table } n \text{ im } : ex^* n} = \frac{C \vdash ex^* \text{ table } n \text{ im } : ex^* n}{C \vdash ex^* \text{ table } n \text{ im } : ex^* n} = \frac{C \vdash ex^* \text{ table } n table$	memory n im : ex* :
$(C \vdash f : ex_i^* : tf)^* = (C_i \vdash glab_i : ex_g^* : tg_i)_i^* = (C \vdash tab : ex_i^* : n_i)_i^2 = (C \vdash mem : ex_i^* : tg_i)_i^* = (C \vdash mem : tg_i)_i^* = (C \vdash mem : tg_i)_i^* = (C \vdash mem : tg_i)$	$n)^{?}$
	ing a straight state of the sta

(contexts) $C := \{ \text{func } tf^*, \text{ global } tg^*, \text{ table } n^?, \text{ memory } n^?, \text{ local } t^*, \text{ label } (t^*)^* \}$

Figure 1. Typing rules

[PLDI 2017]

What's Next?

More performance

More tools

More languages

More platforms

More features

Threads

Instructions for atomic shared memory access Ability to emulate pthreads for C++

Exceptions

"Zero-cost" exception handling Safe, cross-language Catch and possibly resume from traps

SIMD (single instruction multiple data) Exposing SIMD instruction set of modern CPUs For the last 10% of performance in some apps

Tail calls, multiple return values, ...

Better support for high-level languages and compilation techniques Enable instructions with multiple results (e.g., arithmetics with carry)

Managed data types

Allow references to JS/DOM objects within Wasm Heap allocation of structured data types (structs, arrays) Built-in garbage collection

Host bindings

Annotating parameter transforms for calls from/to JavaScript Automatic generation of glue code by engine

What giveth?

Efficient, compact, safe, universal code format

Runs in all browsers and beyond

Rigorous design, specification and evolution process

A new world of possibilities...

webassembly.org

Remember to rate this session

Thank you!

gotober.com

@GOTOber