

WebAssembly
what? why? whither?

Ben L. Titzer
Andreas Rossberg
Google Germany

What is WebAssembly?

● A portable, compact, binary code format
○ Low-level execution model with native unboxed types

○ Suitable as a compilation target, e.g. for C++

● Natively supported in all major browsers
● Developed in the W3C WebAssembly Community Group
● Offers near-native performance for low-level code
● Integrates with the Web platform through JavaScript APIs

Users and potential users

● WebAssembly has grown fast since first browsers shipped in
March 2017, with many prototypes and a lot of interest

○ Google Earth

○ Unity3d

○ Epic

○ AutoCAD

○ Figma

○ Farmville 2

○ Active Financial

○ Soundation

○ AmpedStudio

○ Twitch.tv

WebAssembly Basics - Modules

● WebAssembly code is organized into units called modules
● A module has a number of functions

○ Imports: for accessing explicitly granted host functionality

○ Locally defined functions: local computation

○ Exported functions: allows calls into the module

● A module has no state, but declares:
○ Size of memory

○ Global variables

○ Tables for indirect calls and host interaction

● A module is instantiated to create a stateful computation
○ An instance has a memory, variables, local execution stack, etc

WebAssembly Modules and Instances

func

import import

export

func

func

func

func

print read

func2

func

func

func
data

Module Instance

Binary Format Overview

● Design:
○ A series of sections in a pre-defined order

○ Use of variable-length integers for future-proofing

○ Function body code is stack machine bytecode

Binary Format

Function signatures code=0x01

Imports code=0x02

Function declarations code=0x03

Indirect table code=0x04

Memory configuration code=0x05

Global declarations code=0x06

Exports code=0x07

Function bodies (code) code=0x0a

Memory initialization data code=0x0b

Start function index code=0x08

Table initialization section code=0x09

Binary Format proportions

Function bodies (code) ~90%

Memory initialization data

First sections

Execution Model

0 mem_size

Linear memory Global variables

0 1 2 3

Functions

Indirect function table

0

0 1 2 3

table_size

Call stack

application

WASM engine

(Simplified) Instruction Set

i32 i64Types f32 f64

i32.add

i32.sub

i64.add

i64.sub

f32.add

f32.sub

f64.add

f64.sub

i32.lt i64.lt

Instructions call

return

block

if

loop

i32.load_mem

i32.store_mem

load_global

store_global

br
get_local

set_local

call_indirect

Instruction Example

(func (export "add")
 (param $x i32)
 (param $y i32)
 (result i32)
 (i32.add
 (get_local $x)
 (get_local $y)))

Official text format
+15: 60 02 7f 7f 01 7f

. . .

+27: 01 00

. . .

+48: 01 87 80 80 80 00
+54: 00 20 00 20 01 6a 0b

Binary

Types section

Function declaration

Function body

(int, int) -> int

1 function of type #0

1 body of length 7

0 additional locals

get_local #0

get_local #1

i32.add

end

Embedding WebAssembly

● WebAssembly is not a complete platform, but is more like a
virtual instruction set architecture, like X86

● Requires an embedding environment to provide:
○ Module loading and instantiation

○ Linking between modules (via imports and exports)

○ Host imported functions for interacting with the platform

● Most important embedding is within JavaScript, within the web
○ APIs for loading and instantiating modules

○ Provides access to JavaScript APIs

○ Callable from JavaScript

○ Offers no new “API surface” for the web

Embedding WebAssembly

● WebAssembly instances can only interact with APIs that are
provided by an embedder

code data

console IO

main

code data

console IO

main

Explicitly imported JavaScript functions

JavaScript API to
load, validate, and
instantiate
modules

Exported functions are called as
normal JavaScript functions

code data

console IO

main

Explicitly imported JavaScript functions

JavaScript API to
load, validate, and
instantiate
modules

Exported functions are called as
normal JavaScript functions

 ArrayBuffer

The memory can optionally be
exported to JS as an array buffer

JavaScript API

● New WebAssembly object available in JavaScript outermost
scope

○ WebAssembly.Module - opaque representation of decoded binary bytes

○ WebAssembly.Instance - instantiated module with state

○ WebAssembly.Memory - handle to low-level memory

○ WebAssembly.Table - used for indirect calls

● Synchronous and asynchronous API for compiling modules
○ A simple as new WebAssembly.Module(bytes) and

new WebAssembly.Instance(module, imports)

Why WebAssembly?

High performance

Predictable performance

Empower other languages than JavaScript

Enable features that JavaScript can’t provide

Supersede asm.js and (P)NaCl

Goals & Constraints

Language-independent

Platform-independent

Hardware-independent

Fast to execute

Safe to execute

Deterministic

Easy to reason about

Compact

Easy to generate

Fast to decode

Fast to validate

Fast to compile

Streamable

Parallelizable

S
em

an
tic

s

R
ep

re
se

nt
at

io
n

Performance

[PLDI 2017]

Code Size

[PLDI 2017]

Implementation

WebAssembly is implemented within JavaScript engine
Reuses sophisticated optimising JIT
Fast calls from Wasm to JS and vice versa
No need to reinvent garbage collection, code management, etc

Different implementation strategies

Multiple tiers
AOT compilation, JIT compilation, or interpretation as first tier

Additional optimisations
Code specialisation, hardware traps, etc

Producing WebAssembly

Compiling from different languages
C and C++ (via Emscripten)
Rust
AssemblyScript
... hopefully many more to come soon

Generating Wasm binaries at runtime
Can implement source language JITs on top of Wasm

Designed to be language-independent!

Consuming WebAssembly

In the browser
As part of the web platform
Embedded into JavaScript

Other embeddings and standalone implementations
Many potential use cases independent of the web or JavaScript
Some already being build
Stay tuned.

Designed to be platform/embedding-independent!

The Specification

Contract between producers and consumers

Setting a new bar for industrial languages!

Includes a complete formal semantics
Declarative specification of binary format, validation, execution
Using state-of-the-art techniques from research
Led to simpler and cleaner design

Mechanised and machine-verified in theorem prover
Proof of type soundness
Absence of undefined behaviour, sandbox safety

[PLDI 2017]

[PLDI 2017]

What’s Next?

More performance

More tools

More languages

More platforms

More features

Future Features

Threads
Instructions for atomic shared memory access
Ability to emulate pthreads for C++

Future Features

Exceptions
“Zero-cost” exception handling
Safe, cross-language
Catch and possibly resume from traps

Future Features

SIMD (single instruction multiple data)

Exposing SIMD instruction set of modern CPUs
For the last 10% of performance in some apps

Future Features

Tail calls, multiple return values, ...
Better support for high-level languages and compilation techniques
Enable instructions with multiple results (e.g., arithmetics with carry)

Future Features

Managed data types
Allow references to JS/DOM objects within Wasm
Heap allocation of structured data types (structs, arrays)
Built-in garbage collection

Future Features

Host bindings
Annotating parameter transforms for calls from/to JavaScript
Automatic generation of glue code by engine

What giveth?

Efficient, compact, safe, universal code format

Runs in all browsers and beyond

Rigorous design, specification and evolution process

A new world of possibilities...

webassembly.org

