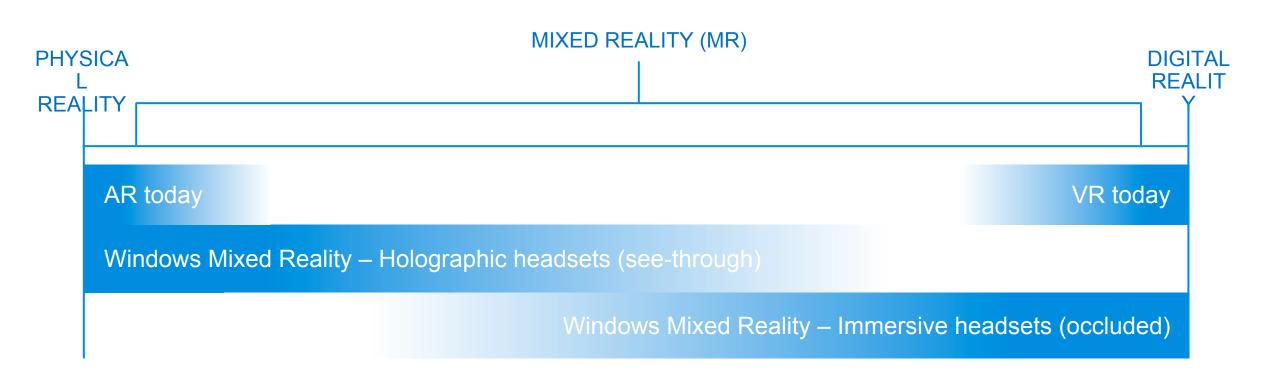
Welcome to the World of Tomorrow

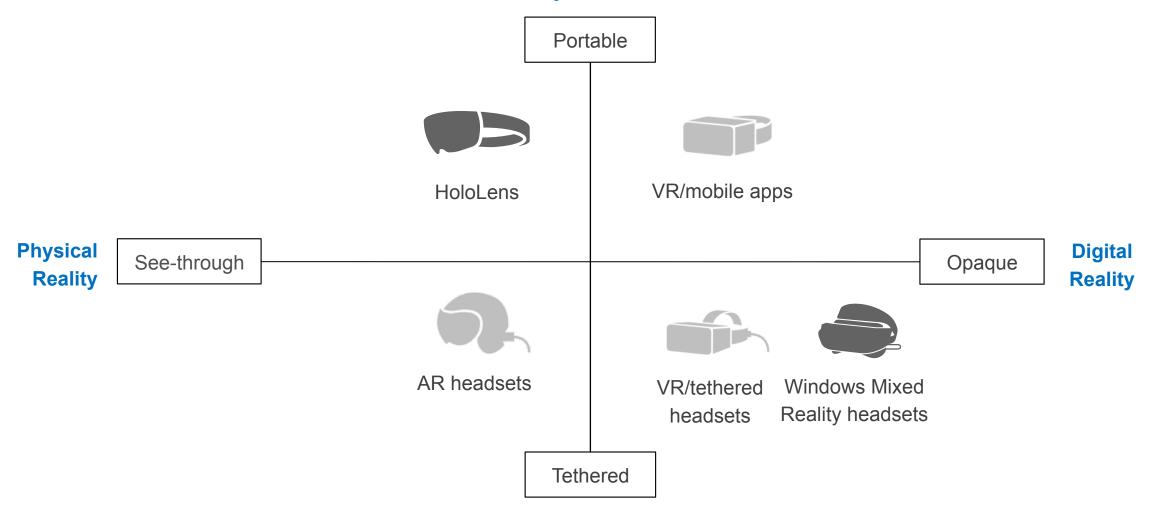
A practical Approach to Mixed Reality

Marc Plogas – Windows AppConsult Engineer Sandra Kriemann – Premier Field Engineer

Agenda


- 1. What is Mixed Reality?
- 2. Demo
- 3. Hardware
- 4. Development
- 5. Tips & Tricks

What is Mixed Reality?



Mixed Reality Spectrum

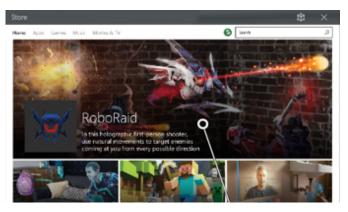
Device Categories

Mobility Performance

What makes us different?

Freedom of movement

Single, consistent user interface


More choice, more customers

Effortless setup

One SDK for many devices

Windows Store for mixed reality apps

Transforming industries

Creation & Design

Assembly & Manufacturing

Training & Development

Communication & Understanding

Entertainment & Engagement

Hardware

End-User PC Guidelines

	Minimum	Recommended			
Processor	Notebook: Intel Mobile Core i5 7th generation CPU, Dual-Core with Hyper Threading Desktop: Intel Desktop i5 6th generation CPU, Dual-Core with Hyper Threading OR AMD FX4350 4.2Ghz Quad-Core equivalent	Desktop: Intel Desktop i7 6th generation (6 Core) OR AMD Ryzen 5 1600 (6 Core, 12 threads)			
GPU	Notebook: NVIDIA GTX 965M, AMD RX 460M (2GB) equivalent or greater DX12 capable GPU Desktop: NVIDIA GTX 960/1050, AMD Radeon RX 460 (2GB) equivalent or greater DX12 capable GPU	Desktop: NVIDIA GTX 980/1060, AMD Radeon RX 480 (2GB) equivalent or greater DX12 capable GPU			
GPU driver WDDM version	WDDM 2.2 driver				
Thermal Design Power	15W or greater				
Graphics display ports	1x available graphics display port for headset (HDMI 1.4 or DisplayPort 1.2 for 60Hz headsets, HDMI 2.0 or DisplayPort 1.2 for 90Hz headsets)				
Display resolution	Resolution: SVGA (800x600) or greater Bit depth: 32 bits of color per pixel				
Memory	8 GB of RAM or greater	16 GB of RAM or greater			
Storage	>10 GB additional free space				
USB Ports	1x available USB port for headset (USB 3.0 Type-A) Note: USB must supply a minimum of 900mA				
Bluetooth	Bluetooth 4.0 (for accessory connectivity)				

Windows 10 Mixed Reality PC Requirements

	Min Laptop PC Requirements*	Min Desktop PC Requirements*			
CPU	Intel Mobile Core i5 (7.Gen) Dual-Core with Hyper Threading or AMD Mobile CPU (TBD)	Intel Desktop Core i5 (e.g. 6100) Dual-Core with Hyperthreading or AMD FX4350 Quad-Core equivalent			
GPU	NVIDIA GTX 965M / AMD RX 460 (2GB) equivalent or greater DX12 Capable GPU	NVIDIA GTX 960/1050 / AMD Radeon RX 460 (2GB) equivalent or greater			
Connectivity	HDMI 1.4 for 60 Hz HMDs, HDMI 2.0/DP for 90 Hz HMDs				
RAM	8GB				
HDD	>10 GB additional free space				
USB	USB 3.0 Type-A or USB 3.1 Type-C Port with DisplayPort Alternate Mode				
ВТ	Bluetooth 4.0 - for accessories				

The display resolution and refresh rate of the HMD will drive the minimum PC compute (CPU, GPU and display connectivity) requirements

Headsets

Mixed Reality Headsets

Holographic Headsets

- Untethered computer
- Holographic Processing Unit
- Advanced sensors

Immersive Headsets

- Tethered, computer required
- Freedom to place the system where you want

Development Edition HoloLens

Holographic resolution: 2.3M light points Holographic density: >2.5k light points per radian Automatic pupillary distance calibration 1 custom-built 32-bit HPU (Holographic Processing Unit) 2GB RAM / 64GB storage 4 environment cameras, 1 depth camera, 1 2MP video camera 4 microphones **1 IMU (Inertial Measurement Unit)** Wifi 802.11ac / Bluetooth 4.1 LE / USB 2.0 Audio 3.5mm jack

Development Edition Immersive Headsets: Acer and HP

Two high-resolution LCD at 1440 x 1440

2.89" diagonal display size (x2)

Front hinged display

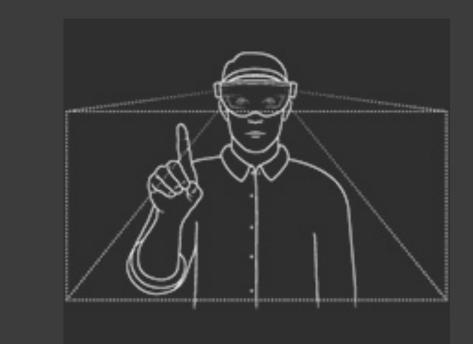
95° horizontal field of view

Display refresh rate up to 90 Hz (native)

Built-in audio out and microphone support through 3.5mm jack Single cable with HDMI 2.0 (display) & USB 3.0 (data) 4.00m/ 0.60m removable cable

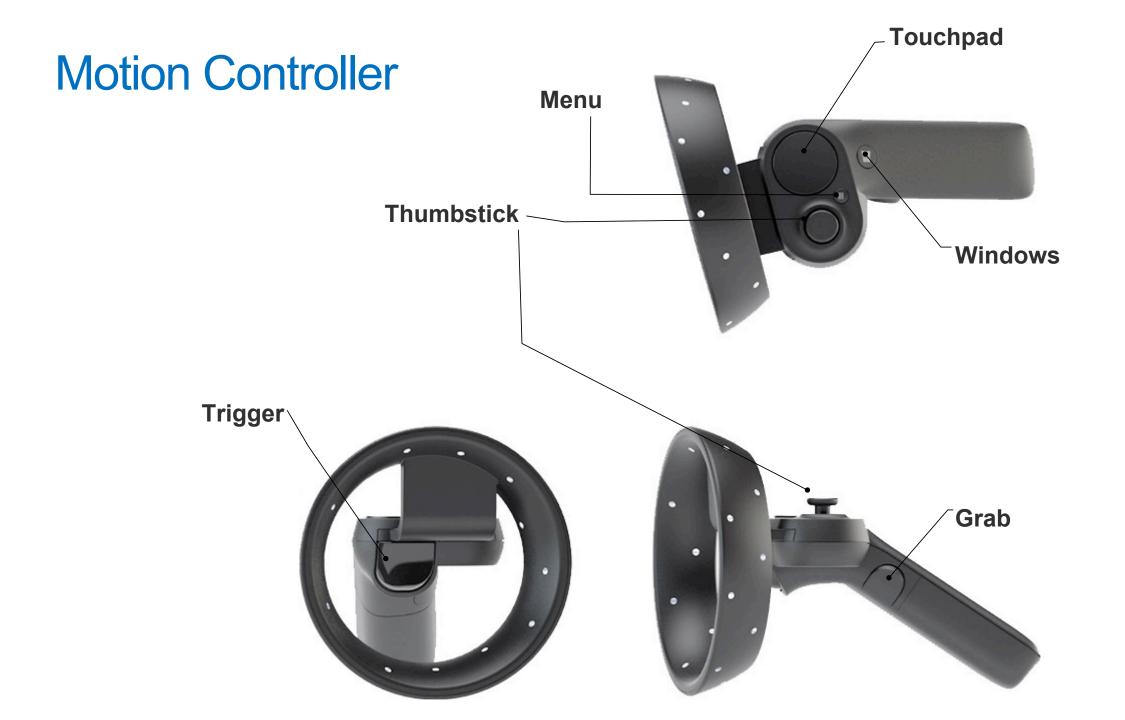
Inside-out tracking

Input



Gaze tells you where the user is looking in the world and lets you determine their intent

Gesture


Gesture input lets you interact with your holograms naturally using your hands or, optionally, with a clicker

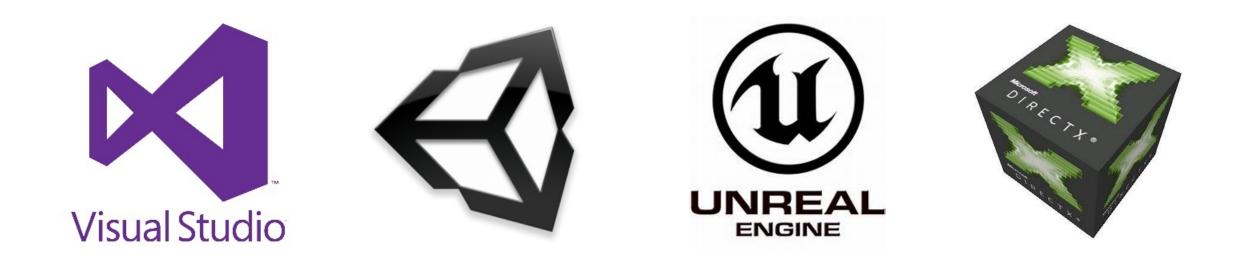
Voice Commands

Voice allows you to directly command a hologram without having to use gestures. You simply gaze at a hologram and speak your command.

Input Diversity

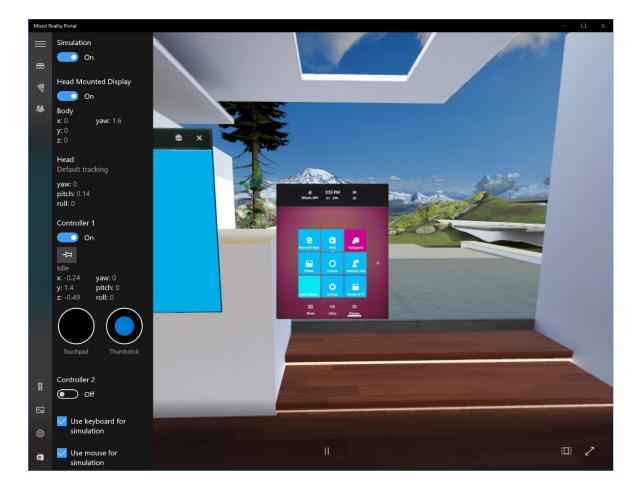
Support for variety of inputs

Seamless input switching


Feature	HoloLens	Immersive headsets
Gaze	✓	✓
Gestures	√	
Voice	√	✓
Gamepad	✓	✓
Motion controllers		✓

Development

Development Tools



Built-In Tools: Mixed Reality Portal

Available at Microsoft Store

Used for MixedReality capture

Provides emulator for IHMD and input

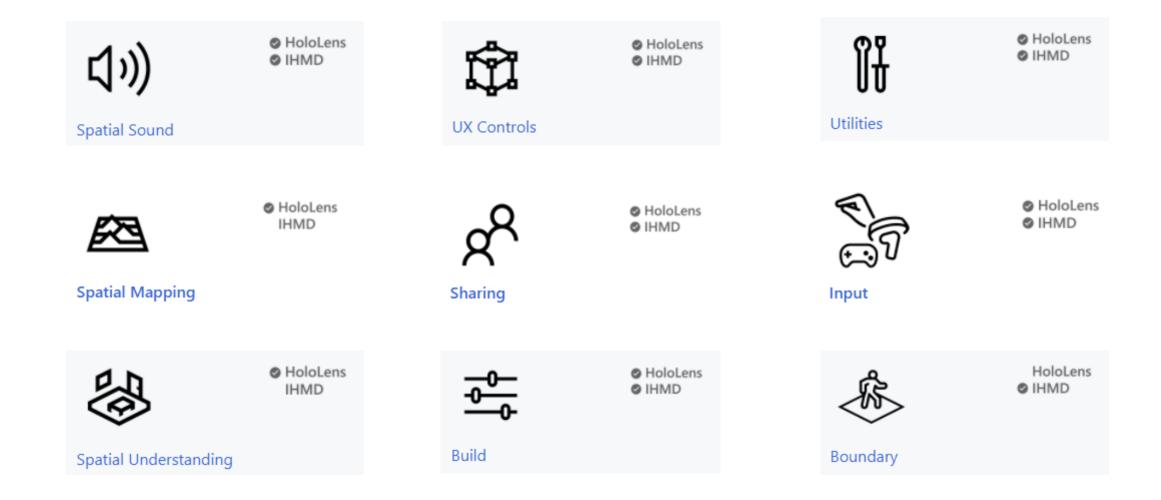
Build-In Tools: Device Portal

GPU Performance Analysis: Obtaining the Logs

C:\Program Files (x86)\Windows Kits\10\Windows Performance Toolkit\gpuview>log Xperf -on LOADER+PROC_THREAD+CSWITCH+DISPATCHER+POWER+DISK_IO+HARD_FAULTS+PROFILE+MEMINFO+DPC+INTERRUPT -stackwalk @"C:\ Program Files (x86)\Windows Kits\10\Windows Performance Toolkit\gpuview\\EventsForStackTrace.txt" -BufferSize 1024 -MinB uffers 120 -MaxBuffers 480 -f Kernel.etl

Xperf -start CaptureState -on 802ec45a-1e99-4b83-9920-87c98277ba9d:0x100236:5+a688ee40-d8d9-4736-b6f9-6b74935ba3b1:0xfff f:5+CA11C036-0102-4A2D-A6AD-F03CFED5D3C9:0xf:6:'stack'+5d8087dd-3a9b-4f56-90df-49196cdc4f11:0xffffffffffffffffff +db6f6ddb-ac77-4e88-8253-819df9bbf140:0xffffffffffffffffffff:6:'stack'+7E7D3382-023C-43cb-95D2-6F0CA6D70381:0x1 -BufferSize 1024 -MinBuffers 120 -MaxBuffers 480 -f CaptureState.etl

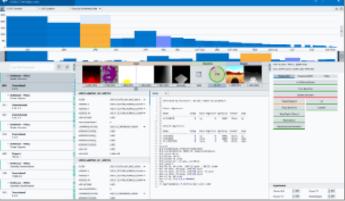
Xperf -capturestate CaptureState 802ec45a-1e99-4b83-9920-87c98277ba9d:0x10FFFF:5:'stack'+a688ee40-d8d9-4736-b6f9-6b74935 ba3b1:0xffff:5+CA11C036-0102-4A2D-A6AD-F03CFED5D3C9:0xf:6:'stack'+5d8087dd-3a9b-4f56-90df-49196cdc4f11:0xffffffffffffffff f:6:'stack'+db6f6ddb-ac77-4e88-8253-819df9bbf140:0xfffffffffffffffffff:6:'stack'+7E7D3382-023C-43cb-95D2-6F0CA6D70381:0x1

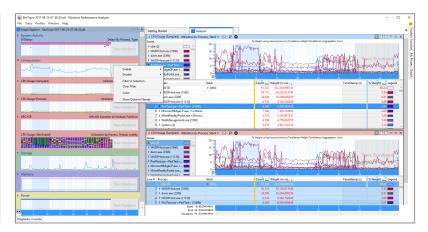

Xperf -start NoCaptureState -on DX:0x2F+531A35AB-63CE-4BCF-AA98-F88C7A89E455:0xffff:4+ee685ec4-8270-4b08-9e4e-8b356f48f9
2f:0:1+802ec45a-1e99-4b83-9920-87c98277ba9d:0x208041:5:'stack'+f404b94e-27e0-4384-bfe8-1d8d390b0aa3+362007f7-6e50-4044-9
082-dfa078c63a73:0x000000000000ffff:0x5+8f2048e0-f260-4f57-a8d1-932376291682+8cc44e31-7f28-4f45-9938-4810ff517464:0xffff
:6+30336ed4-e327-447c-9de0-51b652c86108+8c416c79-d49b-4f01-a467-e56d3aa8234c:0xffff+a42c77db-874f-422e-9b44-6d89fe2bd3e5
:0x000000007fffffff:0x5+8c9dd1ad-e6e5-4b07-b455-684a9d879900:0xFFFF:6+9e9bba3c-2e38-40cb-99f4-9e8281425164:0xFFFF:6+3129
3f4f-f7bb-487d-8b3b-f537b827352f+42C4E0C1-0D92-46f0-842C-1E791FA78D52+28cf047a-2437-4b24-b653-b9446a419a69+a6a00efd-21f2
-4a99-807e-9b3bf1d90285:0x0000000000ffff:0x5+a0386e75-f70c-464c-a9ce-33c44e091623:0xffff:5 -BufferSize 1024 -MinBuffer
s 120 -MaxBuffers 480 -f NoCaptureState.etl

C:\Program Files (x86)\Windows Kits\10\Windows Performance Toolkit\gpuview>

Mixed Reality Toolkit

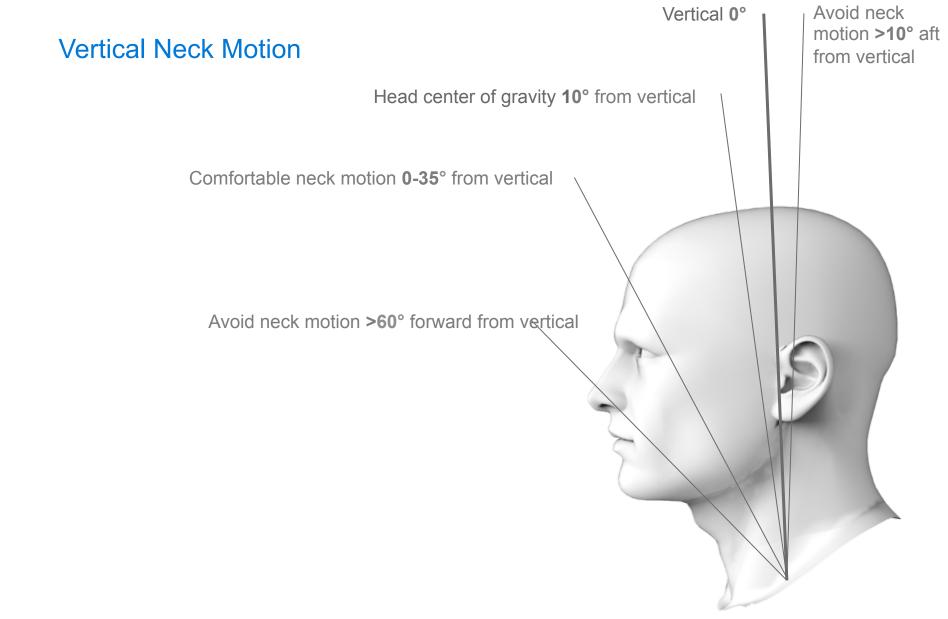
Mixed Reality Academy	Spectator View		Арр	Арр	Арр				
Mixed Reality Toolkit	Mixed Reality Companion Kit								
Mixed Reality Toolkit									
Windows 10 UWP (Mixed Reality APIs)									


Mixed Reality Toolkit Features

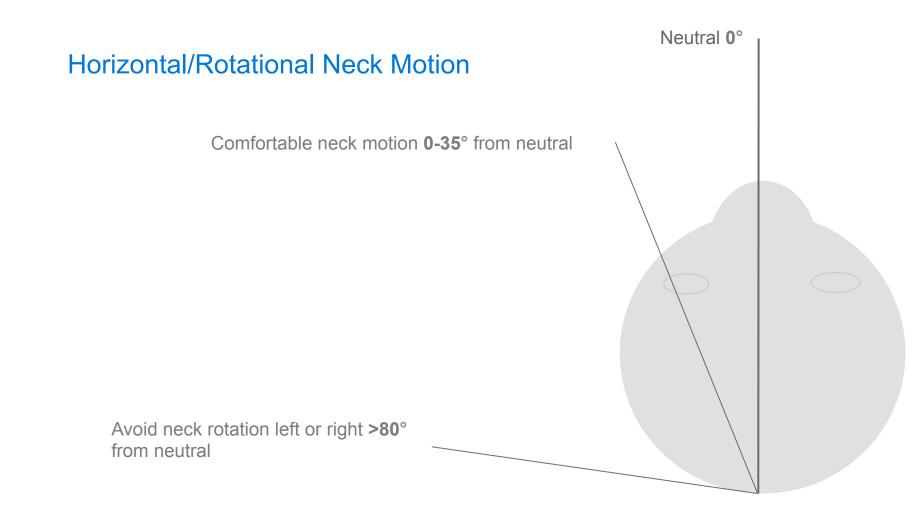


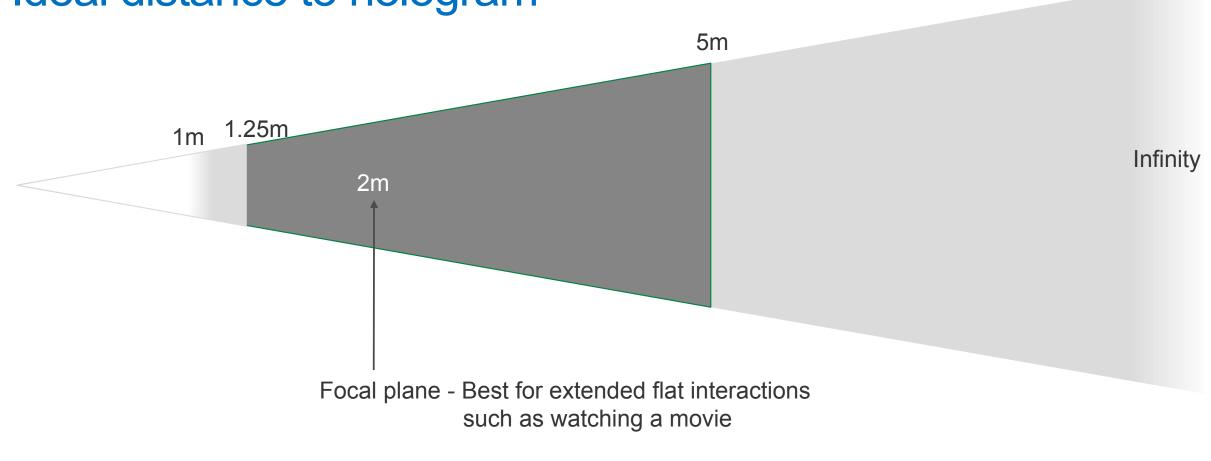
Other helpful Tools

- 1. MixedReality Design Labs
- 2. Intel Graphics Performance Analyzer
- 3. Windows Performance Analyzer
- 4. DXCap



Tips & Tricks





Eye Gaze Angle Avoid gaze angle **>5°** above horizontal Horizontal to ground plane Horizontal 0° Comfortable gaze to **35°** below horizontal

Ideal distance to hologram

Optimal zone – ideal hologram placement

Comfort zone– best for shorter interactions

Highlighting Content

First Person Applications in Unity

https://upload.wikimedia.org/wikipedia/commons/0/0a/Cameraman_John_Fry_Wiltshire_UK.jpg

Transformation

Lerp Position at low latency

-> otherwise targeting actions feel sluggish

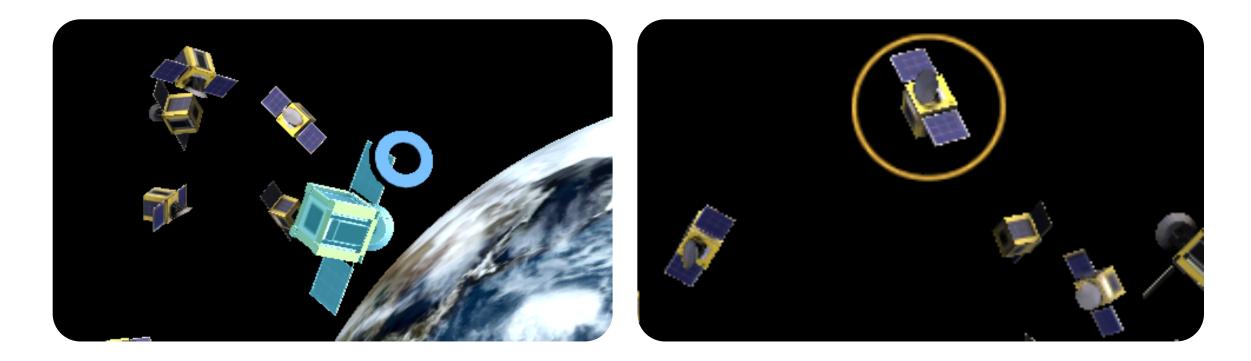
Lerp Rotation at a ratio

-> so the cursor respects surface without getting unusable

Lerp scale with added latency

->to give the user an understanding of depth

Selection


Use Magnetism or Gravity Well

Soft lock the selection

Highlighting

Highlight targeted objects

Indicate actions the user can take whenever possible

Performance Matters

Framerate is King

Remember the Different Framerates

Immersive HMD target 90 FPS

HoloLens target 60 FPS

Preliminary Performance Testing

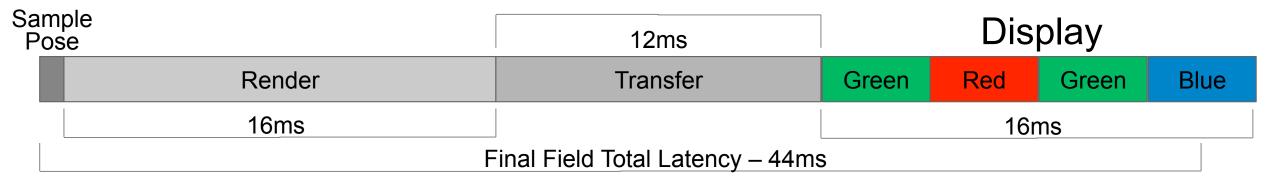
Do your Performance Test with each Update

Track the Frame Rate, GPU & CPU Usage and the Memory Usage

Apply Monitoring for your Performance Data

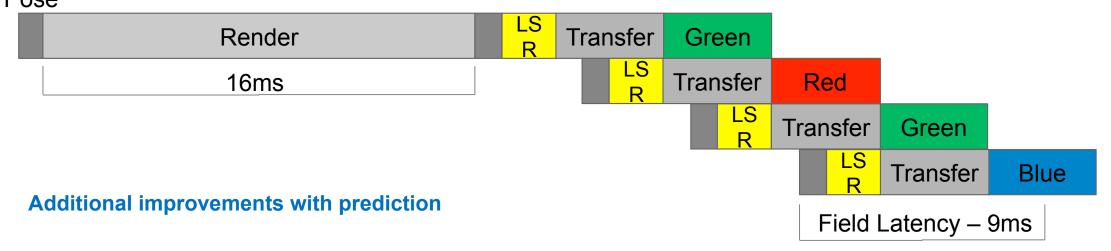
Device Portal is your best Friend

Identify potential issues and bugs, save money


Preliminary Performance Testing

Why is it important to verify performance often

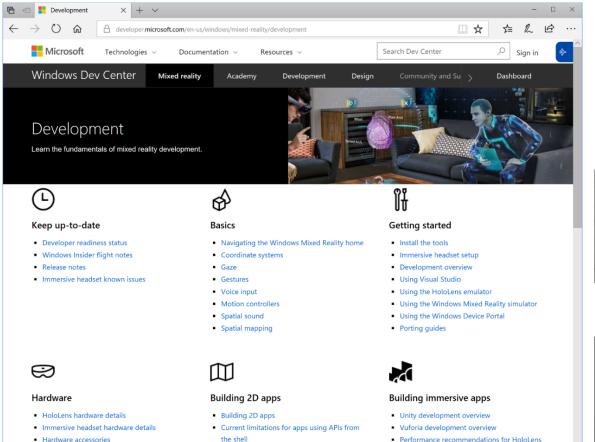
- The integrated Visual Studio Performance Profiler works for Mixed Reality (Exception: GPU)
- Testing graphics performance in Mixed Reality is different than normal flat apps due to the rendering pipeline
- VS Graphics Diagnostic Tools cannot properly capture frames in MR (as of writing).
- VS Graphics Diagnostic Tools is still a very good way of analyzing you graphics pipeline. For critical components or issues, you still may use this toolset on a flat/non-MR version of your app, specifically targeting performance testing. If you are using Unity, make a build without MR support, and profile using this build.
- Intel Graphics Performance Analyzer works for MR apps


Hologram Latency

Total latency to render a Hologram

Late Stage Re-projection (LSR) compensates for computational latency

Sample Pose



Developer Resources

Documentation (<u>http://aka.ms/mr</u>)

Performance recommendations for HoloLens

Tutorials

Gaze Input

Gesture Input

Spatial Sound

Spatial Mapping

Shared Experiences

Hardware accessories

Open Source Projects

Galaxy Explorer

Open source application available in the store. The idea was voted by the community and originally built for HoloLens. It now supports all mixed reality devices, and is a useful end-to-end demonstration of how to build a Unity app for Windows Mixed Reality.

Toolkit

Library with many component that make it easier to build mixed reality apps, including plug-ins for Unity. Some of the more popular components are the sharing services for multiplayer mixed reality apps and spectator view.

Academy Tutorial Apps

The tutorials are great starting points for your app, and they improve with community contributions too.

Questions?

Apply for a dev kit! Apply for a dev kit! https://aka.ms/iwantmr

Sandra Kriemann @sKriemhild / sandra.kriemann@microsoft.com

Marc Plogas @mplogas / marc.plogas@microsoft.com

Porting an existing VR app to Windows Mixed Reality

Porting an Existing VR Apps to Windows Mixed Reality

Code Changes

- 1. Port to UWP
- 2. Chaperone Implementation
- 3. Leverage expanding Input Options
- 4. Windows Process Lifecycle Management
- 5. Switcher for Desktop and VR View

Design Adjustments

- 1. Assets for the Holographic Shell
- 2. Text and Graphics

Test & Publish

- 1. Test on Multiple HMDs & Low-End/High-End PCs
- 2. Publish to the Windows Store

- Spatial Stage
- Spatial stage encapsulates the capabilities of the device as well as the floor and area of use as defined by the user. This info can help devs decide the scale of their application:
 - Seated-scale VR apps just need to know where the user's head is relative to a zero position the app snapped – these apps are enabled by today's SpatialStationaryFrameOfReference.
 - Standing-scale VR apps will need to know the floor origin, so they can place floor-relative content on a plane that will be comfortable for standing users. Note that some devices are only capable of forward standing-scale if they cannot reliably track headset position when the user turns around.
 - Room-scale VR apps also need to know the movement bounds within which the user can safely walk, so they don't place content behind a physical wall that the user must directly grab.
 - World-scale VR apps rely on spatial mapping to determine the shape of the world around the user automatically as they walk around. These are the HoloLens apps developers write today and are enabled by today's SpatialSurfaceObserver.

6DOF	Floor defined	360 tracking	Bounds	Spatial	Maximum
tracking			defined	Mapping	experience
No	-	-	-	-	Orientation-only
Yes	No	-	-	-	Seated
Yes	Yes	No	-	-	Forward standing
Yes	Yes	Yes	No	-	360 standing
Yes	Yes	Yes	Yes	No	Room
Yes	Yes	Yes	Yes	Yes	World