

$ cat ~/.profile

GIT_AUTHOR_NAME=Florian Gilcher

GIT_AUTHOR_EMAIL=florian@asquera.de

TWITTER_HANDLE=argorak

GITHUB_HANDLE=skade

BLOG=skade.me

YAKS=yakshav.es

• Rust and Elasticsearch Trainer

• Event organiser

• Ruby Programmer since 2003

• Rust Programmer since 2013

• CEO asquera GmbH

• Community person

• Rust/Search Meetups

• eurucamp/jrubyconf.eu

• RustFest

• Part of the global Rust community
team

As a hobby, I shoot arrows at stuff

Why is Rust
successful?

Problem

There’s almost no comparable metrics
for programming languages around.

Define
"Success"

• Moves the state of technology for-
ward

• Is used in sizable production envi-
ronments

• Attracts contribution

• Has sizable growth

• Attracts positive feedback

What is
Rust?

• new systems programming language

• powers and was developed in along
with Servo, a new browser engine

• by Mozilla and the Community

• First stable release May 15th, 2015

Providing an alternative to C/C++,
but also higher-level languages.

• Safe

• Concurrent

• Fast

It’s generally perceived that
safety, especially memory-safety

comes at a runtime cost.

• Safe

• Concurrent

• Fast

Pick Three

Core features

• Static type system with local type
inference

• Explicit mutability

• Zero-cost abstractions

• Runtime-independent concurrency
safety

• Errors are values

• No null

• Static automatic memory manage-
ment

• No garbage collection

extern crate tempdir;

use tempdir::*;

use std::fs::File;

fn main() {

let tempdir = TempDir::new("goto-berlin");

let mut tempfile = match tempdir {

Ok(dir) => {

File::create(

dir.path().join("tmpfile")

)

}

Err(_) => { panic!("Couldn’t open tempdir") }

}

do_something(&mut tempfile);

// look, no close necessary!

}

Base concept:
Mutability

struct InnerData {

val: i32

}

struct Data {

inner: InnerData

}

fn main() {

let d = Data { inner: InnerData { val: 41 }};

d.inner.val = 42;

// error: cannot assign to immutable field `d.inner.val`

}

struct InnerData {

val: i32

}

struct Data {

inner: InnerData

}

fn main() {

let mut d = Data { inner: InnerData { val: 41 }};

d.inner.val = 42;

}

Base concept:
Ownership & Borrowing

• Every piece of data is uniquely
owned

• Ownership can be passed

• When owned data reaches the end
of a scope, it is destructed

use std::fs::File;

use std::io::Write;

fn main() {

let file = File::open("test")

.expect("Unable to open file, bailing!");

take_and_write_to_file(file);

// take_and_write_to_file(file);

// ^^ Illegal

}

fn take_and_write_to_file(mut file: File) {

writeln!(file, "{}", "Hello #gotober!");

}

• Access can be borrowed (mutable
and immutable)

• You can borrow mutably once

• Or multiple times immutably

• Exclusive: mutable or immutable,
never both

Shared mutable state is an issue
even single-threaded applications!

use std::fs::File;

use std::io::Write;

fn main() {

let mut file = File::open("test")

.expect("Unable to open file, bailing!");

write_to_file(&mut file);

write_to_file(&mut file);

}

fn write_to_file(file: &mut File) {

writeln!(file, "{}", "Hello #gotober!");

}

fn main() {

let mut vector = vec![1,2,3];

let elem = &vector[1];

vector[2] = 4;

}

error[E0502]: cannot borrow `vector` as mutable because it is also borrowed as immutable

–> src/main.rs:4:5

|

3 | let elem = &vector[1];

| —— immutable borrow occurs here

4 | vector[2] = 4;

| ^^^^^^ mutable borrow occurs here

5 | }

| - immutable borrow ends here

Rust checks validity of all
references at compile-time.

struct Data<’a> {

inner: &’a i32

}

fn return_reference<’a>() -> Data<’a> {

let number = 4;

Data { inner: &number }

}

–> src/main.rs:8:20

|

8 | Data { inner: &number }

| ^^^^^^ does not live long enough

9 | }

| - borrowed value only lives until here

|

All Rust function signatures not only
signal data types, but also mutability,

ownership and interconnections
between input and output types.

100, 1000, 10.000 lines of called
code, Rust keeps these properties!

Abstractions

Rust provides higher-level abstractions
through Generics and Traits, similar
to C++ Templates or Java Generics.

Concurrency
without fear

let counter = Counter { count: 0 };

for _ in 1..3 {

std::thread::spawn(move || {

increment(&mut counter);

// capture of moved value: `counter`

});

}

use std::rc::Rc;

let rc = Rc::new(Counter { count: 0 });

for _ in 1..3 {

let handle = rc.clone();

std::thread::spawn(move || {

// `std::rc::Rc<Counter>` cannot be sent between

threads safely

increment(&mut handle);

});

}

use std::rc::Rc;

let rc = Rc::new(Counter { count: 0 });

for _ in 1..3 {

let handle = rc.clone();

std::thread::spawn(move || {

increment(&mut handle.lock().unwrap());

});

}

This example could be a
concurrency bug in many

languages, or even a double-free!

This analysis is purely static and
independent of concurrency primitive!
Rusts type system allows no data races.

Low-level
control & safety!

• Borrows boil down to pointers at
runtime

• Values are plain values just like in
e.g. C

• Optional unsafe sub-language

“ Safe code means you
can take better risks.”

– @QEDunham

Is Rust
successful?

Moves the state of
technology forward

Rust wraps safety techniques
previously only used in research
settings in a production-ready

package. It brings memory-safety
to environments where it

was previously not possible.

Is used in sizable
production

environments

• Dropbox has sizable backend sys-
tems in it

• Chef Habitat is written using Rust

• Canonical: from server monitoring
to middleware

• Used in several games

• Schauspiel Dortmund

https://www.rust-lang.org/friends.html

Attracts contribution

More then 4/5 of contributions
to the Rust language come

from outside Mozilla.
The compiler has more
then 2000 contributors.

https://thanks.rust-
lang.org/rust/all-time

Has sizable growth

• Doubled in TIOBE and Redmonk in-
dices since last year.

• This maps to increased survey re-
spondent numbers

• Currently has 5 conferences per
year

• Over 100 Meetups around the world

• Newcomers from all directions

Attracts positive
Feedback

• Voted "Most loved language" on
Stackoverflow 2017, 2016

• Only 1/100 of survey respondents
have issues with the Rust commu-
nity

Why is Rust
successful?

Rust wants to be used

Rust was always intended as a
industry production language.
For that reason, it was always
developed in lockstep with
a huge application (Servo).

Rust is approachable

• Easy to get an environment setup

• Build and dependency management
part of the toolchain

• Development tooling as well, like
linters

• We take pride in error messages

• Great docs through the book and a
(almost) fully documented standard
API

• Central YouTube channel with talks
and lectures

• Maintained forums and IRC

Rust is pragmatic

• All features are driven by needs of
real software

• The language is evolved with user
feedback

• Consciously chooses familiar con-
structs

• Picks good ideas from others

Rust plays well
with others

• Rust interfaces to other languages
through the C ABI at zero cost

• Binding generators C and C++

• High-level bindings for some lan-
guages (Ruby, JavaScript)

Rust is a great partner

• Preserves the conveniences of high-
level languages in low-level land.

• Doesn’t want to be the primary lan-
guage at all cost

• Built for gradual adoption

Project:
Stylo

Stylo is Firefox new styling
engine, taken from Servo.

• Stylo is heavily parallel and concur-
rent

• Multithreading without support was
a huge source of bugs

• Concurrency assistance allowed a
rewrite in about a year

• Rusts FFI allowed easy integration

Beyond
plain code

Commitment
to stability

• Rust is released every 6 weeks

• Rust is backwards-compatible, with
huge machinery to ensure that

• Currently at version 1.21.0

Commitment
to stability

• Rust stable allows no use of unsta-
ble features

• These are only available in nightly
builds

• Features that are not ready for wide
use are not released for wide use.

Maturity

• Code generation is provided
through LLVM

• No runtime, no runtime bugs

• Very conservative approach to
stdlib adoption

Cross-capabilities

• rustc is a cross-compiler by default
and the whole toolchain is aware

• Almost-no-setup cross compilation!
(getting better)

• Rust supports embedded and IoT
usecases

• Yes, we WASM

Governance & Care

All changes go through
an open RFC process!

Mozilla has great experience with open
discussion and processes and it shows!

Medium time to merged
PR for changes: 6 days!

Supporting
commercial users

• regular interviews with prod users,
to hear about their issues

• the core team can always be spoken
to

• consulting, development and train-
ing available, through integer32 and
asquera.

Have a question?
community-team@rust-lang.org

Rust brings safe programming
to targets where it was unfeasible
before while also bringing new
things to the table to compete
with other safe languages.

You can’t
spell trust

without Rust

