

Make Web Apps Fun to Build
& Easy to Refactor with Elm

danielbachler.de

 on Twitter@danyx23

Work at Douglas Connect

http://danielbachler.de/
http://twitter.com/danyx23
http://www.douglasconnect.com/

Elm Elevator pitch
Statically typed, purely functional programming language

Compiles to Javascript

No runtime errors

Easy to learn, nice to use

Javascript syntax
1:
2:
3:
4:
5:
6:

function multiplyNumbers(a, b) {
 return a * b;
}

// Weird type coercion
var result = multiplyNumbers(4, "three");

Elm syntax
1:
2:
3:
4:
5:
6:

 multiplyNumbers a b =
 a * b

-- Compile error!
 result = multiplyNumbers 4 "three"

Elm syntax
1:
2:
3:
4:
5:

multiplyNumbers a b =
 a * b

result = multiplyNumbers 4 3

Type annotations
1:
2:
3:
4:
5:
6:

multiplyNumbers : Int -> Int -> Int
multiplyNumbers a b =
 a * b

result : Int
result = multiplyNumbers 4 3

Type annotations
1:
2:
3:
4:
5:
6:
7:
8:

type alias Person =
 { name : String
 , yearBorn : Int
 }

calculateAge : Int -> Person -> Int
calculateAge currentYear person =
 currentYear - person.yearBorn

Pain points Elm adresses

Code in dynamic languages is hard to
refactor correctly

So we do it less => lower code quality

Often introduce bugs/crashes

In Elm, everything is fully typed
Even when no type annotations are used, ever

The compiler checks that all types match

No "any" type

Records
(Product types)

 1:
 2:
 3:
 4:
 5:
 6:
 7:
 8:
 9:
10:

type alias Programmer =
 { name : String
 , favouriteLanguage : String
 }

daniel : Programmer
daniel =
 { name = "Daniel"
 , favouriteLanguage = "Elm"
 }

Union types
(aka Sum types)

 1:
 2:
 3:
 4:
 5:
 6:
 7:
 8:
 9:
10:

type Status
 = Pending
 | Completed

val1 = Pending

type alias Task =
 { name : String
 , status : Status
 }

Pattern matching
1:
2:
3:
4:
5:

getUIString : Status -> String
getUIString status =
 case status of
 Pending -> "Not yet started"
 -- Compile error! Missing case!

Pattern matching
1:
2:
3:
4:
5:

getUIString : Status -> String
getUIString status =
 case status of
 Pending -> "Not yet started"
 Completed -> "Completed"

What if only some states have data
attached?

Progress report when running

How would you model this in another language?

 1:
 2:
 3:
 4:
 5:
 6:
 7:
 8:
 9:
10:
11:
12:

type Status
 = Pending
 | Completed
 | Failed

type alias Task =
 { name : String
 , status : Status
 , currentItem : Int
 , numItems : Int
 , errors : List String
 }

Making invalid states unrepresentable

The real power of union types
 1:
 2:
 3:
 4:
 5:
 6:
 7:
 8:
 9:
10:
11:
12:
13:

type Status
 = Pending
 | Running Int Int -- Two ints as "payload" data
 | Completed
 | Failed (List String) -- a list of strings as "payload" data

val1 : Status
val1 = Running 0 10

type alias Task =
 { name : String
 , status : Status
 }

Pattern matching
 1:
 2:
 3:
 4:
 5:
 6:
 7:
 8:
 9:
10:
11:

getUIString : Status -> String
getUIString status =
 case status of
 Pending ->
 "Not yet started"
 Running current total ->
 (toString (current + 1)) ++ " of " ++ (toString total)
 Completed ->
 "Completed"
 Failed errors ->
 "Failed! Message : " ++ (String.join ", " errors)

Pattern matching
Pattern matching is the only way to get payload "out" of a union
type

Polymorphic types
(aka Generics)

 1:
 2:
 3:
 4:
 5:
 6:
 7:
 8:
 9:
10:
11:

type BinaryTree elementType
 = Leaf elementType
 | Node (BinaryTree elementType) (BinaryTree elementType)

leafOnly : BinaryTree Int
leafOnly =
 Leaf 23

smallTree : BinaryTree Int
smallTree =
 Node (Leaf 17) leafOnly

Unde�ned is not a function /
NullReferenceException

Elm does not have null/unde�ned

This kills a whole family of bugs

How can it represent missing values?

Dealing with optional values
1:
2:
3:
4:
5:
6:
7:
8:
9:

type Maybe a
 = Nothing
 | Just a

val1 : Maybe Int
val1 = Nothing

val2 : Maybe Int
val2 = Just 23

What if we need error information?
1:
2:
3:
4:
5:
6:
7:
8:
9:

type Result err success
 = Ok success
 | Err err

val1 : Result String Int
val1 = Err "This is an error message"

val2 : Result String Int
val2 = Ok 23

All values are immutable
1:
2:
3:
4:
5:
6:
7:

x = 1

x = 2 -- compile error

x = x + 1 -- compile error

y = x + 1 -- Ok

All (nested) �elds are immutable
 1:
 2:
 3:
 4:
 5:
 6:
 7:
 8:
 9:
10:
11:
12:
13:

type alias Programmer =
 { name : String
 , favouriteLanguage : String
 }

programmerA : Programmer
programmerA =
 { name = "Daniel"
 , favouriteLanguage = "Elm"
 }

programmerA.name = "Eve"
-- Compile error!

Creating new record values based on old
ones

 1:
 2:
 3:
 4:
 5:
 6:
 7:
 8:
 9:
10:
11:
12:
13:
14:
15:
16:

type alias Programmer =
 { name : String
 , favouriteLanguage : String
 }

programmerA : Programmer
programmerA =
 { name = "Daniel"
 , favouriteLanguage = "Elm"
 }

programmerB : Programmer
programmerB =
 { programmerA
 | name = "Eve"
 }

This means we can't do loops
in elm!

Use map, fold (aka reduce), or recursion instead

Elm is entirely pure!
No side e�ects possible in the language

(Except Debug.log and Debug.crash)

Getting work done with Elm
Elm comes with a small runtime

No direkt Javascript FFI

1:
2:
3:
4:
5:
6:
7:
8:

-- Elm
addNumbers : Int -> Int -> Int
addNumbers a b =
 a + b

result1 = addNumbers 1 2
result2 = addNumbers 1 2
result 1 == result 2 -- True

1:
2:
3:
4:
5:
6:
7:
8:
9:

/// Javascript
function addNumbersWeird(a, b) {
 window.myGlobalState = window.myGlobalState || 0;
 return a + b + (window.myGlobalState++);
}

var result1 = addNumbersWeird(1, 2);
var result2 = addNumbersWeird(1, 2);
result1 == result2; // False

This makes testing super nice
Calling the same function again with the same arguments will
always lead to the same result

Thanks to static types, Unit testing can focus on actual logic

Mocking is usually not necessary with pure functions

And refactorings are safe and fun!

The elm architecture

Bene�ts
Model is a single source of truth

Visual elements are created from the current model

Apps are well structured

update function is the only place where your state is modi�ed

Possible to replay UI sessions easily, implement Undo/Redo, ...

How view functions work
1:
2:
3:
4:
5:
6:
7:

view : Model -> Html Msg
view model =
 div [class "counter"]
 [button [onClick Decrement] [text "-"]
 , div [] [text (toString model.counter)]
 , button [onClick Increment] [text "+"]
]

1:
2:
3:
4:
5:

<div class="counter">
 <button onClick="dispatch(Decrement)">-</button>
 <div>{model.counter}</div>
 <button onClick="dispatch(Increment)">+</button>
</div>

Demo time

Command values tell the Elm runtime to
perform side effects

Like HTTP requests

Random number generation

...

Commands in action
 1:
 2:
 3:
 4:
 5:
 6:
 7:
 8:
 9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

import Http

type Msg
 = LoadClicked
 | Loaded (Result Http.Error String)

sendCommand : Cmd Msg
sendCommand =
 Http.send Loaded (Http.getString "https://example.com/books/war-and-pea

update : Msg -> Model -> (Model, Cmd Msg)
update msg model =
 case msg of
 LoadClicked ->
 (model, sendCommand)
 Loaded (Ok text) ->
 ...
 Loaded (Err httpErr) ->
 ...

Ports are used to send messages to/from
Javascript

This lets you use any Javascript library / Browser API in native JS

Send messages back and forth between Elm (Business Logic,
Rendering) and your native JS code

Building production apps with
Elm

Overall: very nice experience

No runtime exceptions, evar!

Compiler helps you, especially when refactoring

Wonderful con�dence in our code

Obstacles with Elm
Sometimes you need to use ports for trivial things (e.g. focus an
input element)

Can't publish modules with "native" Javascript as o�cial elm
package (e.g. library to use Web Audio API)

Writing Json Decoders is a bit tedious

Elm is ready to be used in
production

Drastically reduced bug count

Development speed does not slow down as project gets more
complex

Some JavaScript interop via ports probably necessary, but still
much better than all JS!

Where to go to learn more?

Try it for a side project or internal tool

Go on the Elm slack and ask questions!

try.elm-lang.org

http://elm-lang.org

http://try.elm-lang.org/
http://elm-lang.org/

Thank you!
danielbachler.de

 on Twitter@danyx23

http://danielbachler.de/
http://twitter.com/danyx23

